2000 Fiscal Year Final Research Report Summary
Special functions associated with the geometric structures on complex manifolds
Project/Area Number |
10640072
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | NAGOYA UNIVERSITY |
Principal Investigator |
SATO Takeshi Nagoya Univ., Graduate School of Math., Assistant, 大学院・多元数理科学研究科, 助手 (60252219)
|
Co-Investigator(Kenkyū-buntansha) |
MUKAI Shigeru Nagoya Univ., Graduate School of Math., Proffessor, 大学院・多元数理科学研究科, 教授 (80115641)
UMEMURA Hiroshi Nagoya Univ., Graduate School of Math., Proffessor, 大学院・多元数理科学研究科, 教授 (40022678)
SATO Hajime Nagoya Univ., Graduate School of Math., Proffessor, 大学院・多元数理科学研究科, 教授 (30011612)
YOSHIKAWA Ken-ichi Univ.of Tokyo, Graduate School of Math.Sci., Assistant Proffessor, 大学院・数理科学研究科, 助教授 (20242810)
KOBAYASHI Ryoichi Nagoya Univ., Graduate School of Math., Proffessor, 大学院・多元数理科学研究科, 教授 (20162034)
|
Project Period (FY) |
1998 – 2000
|
Keywords | G-structure / moduli space / special function |
Research Abstract |
We treated the moduli space A_5 of the abelian surfaces with the polarization of type (1,5). It is biratianal equivalnet to a Fano 3-fold U_<22> whichi is a equivariant compactification of some SL (2, C)-orbit. Let G_5⊂PGL (2) be the icosahedral group and PGL (2)⊂P^3 be the embedding as quadrics. Let P^^-^3 the 60-point-blow up of the 3-dimensional projective space. Then the quotient space P^^-^3/G_5×G_5 is isomorphic to the minimal resolution of the Satake compactifecation of A_5. In this case, the uniformizing differential equation of A_5 is already known.
|