• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Geometric structure and topology of manifolds and graphs

Research Project

Project/Area Number 10640078
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOkayama University

Principal Investigator

KATSUDA Atsushi  Okayama University, Science, Associate Prof., 理学部, 助教授 (60183779)

Co-Investigator(Kenkyū-buntansha) TAMURA Hideo  Okayama University, Science, Prof., 理学部, 教授 (30022734)
SHIMOKAWA Kazuhisa  Okayama University, Science, Prof., 理学部, 教授 (70109081)
SAKAI Takashi  Okayama University, Science, Prof., 理学部, 教授 (70005809)
TAKEUCHI Hiroshi  Shikoku University, Management and Information, Prof., 経営情報学部, 教授 (20197271)
IKEDA Akira  Okayama University, Education, Prof., 教育学部, 教授 (30093363)
Project Period (FY) 1998 – 1999
Keywordsspectrum / inverse problem / stability / the Hausdorff distance / Laplacian / isospectral graphs / isoperimetric constants
Research Abstract

The present project has been devoted to the study on the following subjects related to spectral geometry of manifolds and graphs.
(1) Spectral geometry of graphs : We have proved the analog in graphs of the celebrated Faber-Krahn inequlity for domains in Euclidean spaces and find two methods of construction of isospectral pairs of graphs with respect to combinatorial Laplacian. These are contents of References. Moreover, I start to investigate aymptotic behavior of random walks defined on infinite cover of finite graphs by the Heisenberg group.
(2) Stability of the Gel'fand inverse spectral problem : This project is joint work with Y. V. Kurylev and M. Lassas. The Gel'fand inverse spectral problem is to determine a Riemannian manifold with boundary from the spectrum and the boundary value of the Neuman Laplacian. This is solved by results Belishev and Kurylev combining the approximate controllabity results by Tataru. Then, one of next challenge is the stability. We first obtained stability results in the class of manifolds including the condition on the derivative of curvature and later, succeed to remove it. Moreover, we have obtained the existence results of harmonic coordinates in manifolds with boundary. These results are heavily depend on compactness arguments and thus, no effective estimate can not be given. However, we also have partial results foreffective estimates.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] 勝田篤: "The first eigenvalue of the discrete Dirichlet problem for a graph"Journal of Combinatorial Mathematics and Combinatorial Computation. 27. 217-225 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 勝田篤: "The Faber-Krahn type isoperimetric inequalities for a graph"Tohoku Mathematical Journal. 51. 267-281 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 勝田篤: "Isospectral graphs and isoperimetric constants"Discrete Mathematics. 207. 33-52 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 酒井隆: "On Riemannian manifolds admitting a function whose gradient is of constant norm II"Kodai Mathematical Journal. 21. 102-124 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 竹内博: "On the first eigenvalue of the p-Laplacian in a Riemannian manifolds"Tokyo Journal of Mathematics. 21. 135-140 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 田村英男: "Magnetic scattering at low energy in two dimension"Nagoya Mathematical Journal. 155. 95-151 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 勝田 篤: "線形代数学I"培風館. 168 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A. Katsuda and H. Urakawa: "The first eigenvalue of the discrete Dirichlet problem for a graph"J. Comb. Math. Comb. Comp.. 27. 217-225 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Katsuda and H. Urakawa: "The Faber-Krahn type isoperometric inequalities for a graph"Tohoku. Math. J.. 51. 267-281 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Fujii and A. Katsuda: "Isospectral graphs and isoperimetric constants"Disc. Math.. 207. 33-57 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sakai: "On Riemannian manifolds admitting a function whose gradient is of constant norm"Kodai Math. J.. 21. 102-124 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Takeuchi: "On the first eigenvalue of the p-Laplacian in a Riemannian manifolds"Tokyo J. Math.. 21. 135-140 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Tamura: "Magnetic scattering at low energy in two dimension"Nagoya Math. J.. 155. 95-151 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Katsuda: "Linear algebra I"Baihukan. 168 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi