• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Isometric imbedding of Riemannian manifolds

Research Project

Project/Area Number 10640079
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionHiroshima University

Principal Investigator

AGAOKA Yoshio  Faculty of Integrated Arts and Sciences, Hiroshima University, Associate Professor, 総合科学部, 助教授 (50192894)

Co-Investigator(Kenkyū-buntansha) NAKAYAMA Hiromichi  Faculty of Integrated Arts and Sciences, Hiroshima University, Associate Professor, 総合科学部, 助教授 (30227970)
YOSHIDA Toshio  Faculty of Integrated Arts and Sciences, Hiroshima University, Professor, 総合科学部, 教授 (10033854)
Project Period (FY) 1998 – 2000
Keywordsisometric imbedding / symmetric space / Gauss equation / root system / rigidity / plethysm / Grassmann algebra
Research Abstract

In this research, we obtained the following results on isometric imbeddings of Riemannian manifolds :
1. We determine the value of the intrinsic invariant p(G/K) for many Riemannian symmetric spaces G/K, and obtain the estimates on the dimension of the Euclidean space into which G/K can be locally isometrically immersed. In particular, for the spaces Sp(m)/U(m) and Sp(m), the least dimensional Euclidean spaces are determined.
2. We show that the symmetric space SU(3)/SO(3) and its non-compact dual space admit solutions of the Gauss equation in codimension 5, and also admit almost solutions in codimension 4.
3. We determine the rank of the quadratic map defined by the Gauss equation for the case dim M【less than or equal】9. This result shows the existence an obstruction of local isometric imbeddings for the case M^9⊂R^<23>.
4. We give a new formulation of the Gauss equation in the exterior algebra, and state the relation to the original equation.
5. It is quite important to know the GL(V)-irreducible decomposition of the polynomial ring on the space of curvature like tensors. This is a sort of "plethysm" appeared in the representation theory. We give some decomposition formulas of special plethysms.
6. We show that the least dimensional Euclidean space into which the quaternion projective plane can be locally isometrically immersed is R^<14>.

  • Research Products

    (26 results)

All Other

All Publications (26 results)

  • [Publications] Y.Agaoka,E.Kaneda: "Local isometric imbeddings of symplectic groups"Geometriae Dedicata. 71-1. 75-82 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Agaoka: "A new example of higher order almost flat affine connections on the three-dimensional sphere"Houston Journal of Mathematics. 24-3. 387-396 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Agaoka,I.-B.Kim,B.H.Kim,D.J.Yeom: "On doubly warped product manifolds"Mem.Fac.Integrated Arts & Sci.Hiroshima Univ.Ser.IV. 24. 1-10 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Agaoka: "On the variety of 3-dimensional Lie algebras"Lobachevskii Journal of Mathematics. 3. 5-17 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Agaoka: "Solutions and almost solutions of the Gauss equation of SU(3)/SO(3)"Mem.Fac.Integrated Arts & Sci.Hiroshima Univ.Ser IV. 25. 1-10 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Agaoka,B.H.Kim,H.J.Lee: "Conharmonic transformations of twisted product manifolds"Mem.Fac.Integrated Arts & Sci.Hiroshima Univ.Ser IV. 25. 11-20 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Agaoka: "Left invariant poisson structures on classical non-compact Lie groups"Israel Journal of Mathematics. 116. 189-222 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Agaoka: "On the Gauss equation in the exterior algebra"Mem.Fac.Integrated Arts & Sci.Hiroshima Univ.Ser IV. 26. 95-108 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Agaoka,B.H.Kim,S.D.Lee: "Conharmonically flat fibred Riemannian space"Mem.Fac.Integrated Arts & Sci.Hiroshima Univ.Ser IV. 26. 109-115 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Agaoka: "Uniqueness of left invariant symplectic structures on the affine Lie group"Proceedings of Amer.Math.Soc.(published online). 1-10 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Agaoka,E.Kaneda: "Strongly orthogonal subsets in root systems"to appear in Hokkaido Math.Journal.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi,H.Maki,T.Yoshida: "Stably extendible vector bundles over the real projective spaces and the lens spaces"Hiroshima Mathematical Journal. 29. 631-638 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi,H.Maki,T.Yoshida: "Extendibility and stable extendibility of the power of the normal bundle associated to an immersion of the lens space mod 4"Mem.Fac.Sci.Kochi Univ.(Math.). 22. 45-57 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Agaoka, E.Kaneda: "Local isometric imbeddings of symplectic groups"Geometriae Dedicata. 71-1. 75-82 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Agaoka: "A new example of higher order almost flat affine connections on the three-dimensional sphere"Houston J.Math.. 24-3. 387-396 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Agaoka, I.-B.Kim, B.H.Kim, D.J.Yeom: "On doubly warped product manifolds"Mem.Fac.Integrated Arts Sci.Hiroshima Univ.Ser.IV. 24. 1-10 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Agaoka: "On the variety of 3-dimensional Lie algebras"Lobachevskii J.Math.. 3. 5-17 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Agaoka: "Solutions and almost solutions of the Gauss equation of SU (3)/SO (3)"Mem.Fac. Integrated Arts Sci. Hiroshima Univ. Ser.IV. 25. 1-10 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Agaoka, B.H.Kim, H.J.Lee: "Conharmonic transformations of twisted product manifolds"Mem.Fac. Integrated Arts Sci. Hiroshima Univ. Ser.IV. 25. 11-20 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Agaoka: "Left invariant Poisson structures on classical non-compact Lie groups"Israel J.Math.. 116. 189-222 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Agaoka: "On the Gauss equation in the exterior algebra"Mem.Fac. Integrated Arts Sci. Hiroshima Univ. Ser.IV. 26. 95-108 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Agaoka, B.H.Kim, S.D.Lee: "Conharmonically flat fibred Riemannian space."Mem.Fac. Integrated Arts Sci. Hiroshima Univ. Ser.IV. 26. 109-115 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Agaoka: "Uniqueness of left invariant symplectic structures on the affine Lie group"Proc.Amer.Math.Soc.. (published online). 1-10 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Agaoka, E.Kaneda: "Strongly orthogonal subsets in root systems"Hokkaido Math.J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi, H.Maki, T.Yoshida: "Stably extendible vector bundles over the real projective spaces and the lens spaces"Hiroshima Math.J.. 29. 631-638 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi, H.Maki, T.Yoshida: "Extendibility and stable extendibility of the power of the normal buncle associated to an immersion of the lens space mod 4"Mem.Fac.Sci. Kochi Univ. (Math.). 22. 45-57 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi