• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Annual Research Report

結び目のエネルギーの研究(エネルギー最小元の存在と数値実験)

Research Project

Project/Area Number 10640085
Research InstitutionTokyo Metropolitan University

Principal Investigator

今井 淳  東京都立大学, 大学院・理学研究科, 助教授 (70221132)

Co-Investigator(Kenkyū-buntansha) 出口 哲生  お茶の水女子大学, 理学部, 助教授 (70227544)
阿原 一志  明治大学, 理工学部, 講師 (80247147)
岡 睦雄  東京都立大学, 理学研究科, 教授 (40011697)
荻上 紘一  東京都立大学, 理学研究科, 教授 (10087025)
大仁田 義裕  東京都立大学, 理学研究科, 教授 (90183764)
Keywordsトポロジー / 結び目理論 / エネルギー
Research Abstract

結び目のエネルギーとは、結び目の空間上に定義された実数値汎関数で、結び目が自己交叉しようとすると、無限大に発散するようなもののことである。荷電した結び目の静電エネルギーの概念を拡張して、何種類かの結び目のエネルギーを定義してきた。それぞれの結び目のエネルギーに対し、各結び目型の中に、そのエネルギーの値を最小にするような埋め込み写像(これをエネルギー最小元と呼ぶ)が存在するかどうか、という問題を研究してきた。今年得えられた成果で一番主要なことは、結び目が入っている多様体がコンパクトであるか、あるいは3次元双曲空間ならば、指数が2より大きいエネルギーに対しては、各結び目型にエネルギー最小元が存在するということを証明したことである。その他に、次の二つの成果を得た。一つは有限個の頂点を持つ折れ線結び目をエネルギーを減らすように変形していく数値実験に関することで、
エネルギー極小に実験上達する度に頂点の数を倍増させていった場合の極限としてえられる結び目の形の意味付けについて、エネルギーの指数が3以上ならば、その結び目型の開苞に属するはめ込み写像(すなわち、自己交叉を持つ特異結び目)で、全自乗曲率を最小にするものであろう、という予想を得た。二つ目は、荷電した結び目の静電エネルギーの拡張ではない、幾何学的な結び目のエネルギーをいくつか定義した。これは自己距離等の量と関連を持っている。

  • Research Products

    (2 results)

All Other

All Publications (2 results)

  • [Publications] Jun O, Hara: "Energy of knots" "Ideal Knots" Stasiak, Katrich, Kanffman eds World Scientific. 288-314 (1998)

  • [Publications] Jun O, Hara: "Asymptotic formulae of energies of polygonal knots" to appear in Proceedings of the Conference on Low Dimensional Topology Nenclsa & Vasconcelos eds. CONM book series.

URL: 

Published: 1999-12-11   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi