• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Studies on Combinatorial Structures of 3-Manifolds

Research Project

Project/Area Number 10640089
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKeio University

Principal Investigator

ISHII Ippei  Keio Univ., Dept.of Math., Associate Prof., 理工学部, 助教授 (90051929)

Co-Investigator(Kenkyū-buntansha) OHTA Katsuhiro  Keio Univ., Dept.of Math., Associate Prof., 理工学部, 助教授 (40213722)
ENOMOTO Hikoe  Keio Univ., Dept.of Math., Prof., 理工学部, 教授 (00011669)
MAEDA Yoshiaki  Keio Univ., Dept.of Math., Prof., 理工学部, 教授 (40101076)
KOUNO Masaharu  Kitami Inst.of Tech., Dept.of Information, Prof., 教授 (40170203)
IKEDA Hiroshi  Keio Univ., Dept.of Math., Prof., 理学部, 教授 (10031353)
Project Period (FY) 1998 – 1999
Keywords3-manifold / spine / Heegaard splitting / Dehn surgery / Poincare conjecture
Research Abstract

(1) On Ds-diagrams
It was shown that two Ds-diagrams representing the same closed 3-manifold can be transformed to each other by a sequence of "elementary deformations".
(2) On Heegaard splittings
A new condition for a Heegaard splitting to be reducible has been found. This condition is described by the notion of a "d-pseudo core".
(3) On framed links in a homotopy 3-sphere
It was shown that any homotopy 3-sphere admits a "very special framed link" , which enjoys a good property and closely related to a Heegaard splitting.
(4) On the Poincare conjecture
Using the above two results (2) and (3), we have proposed a new method for attacking the famous "Poincare conjecture".

  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] H. Enomoto: "A Lower Bound for the Edge-Crossings over the Spine of the Book embedding of Graphs"Discrete Applied Math.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. Enomoto: "Connecte Sabgraphs with Small Subgraphs with Small Degree sums in 3-connected Plane Graphs"J. Graph Theory. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. Omori: "Noncommutable 2-sphere"J. Math. Soc. Japan. 50. 915-943 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. Ikeda: "Remodeling a DS-diagram into one with E-cycle"Tokyo J. Math.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] I. Ishii: "A new condition for a Heegaard spliffine to be reductable"Tokyo J. Math.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] I. Ihsii: "Very special framed links for a homotopy 3-sphere"Tokyo J. Math. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. Enomoto, M.S. Miyauchi and K. Ota: "A lower Bound for the number of Edge-Crossings over the Spine of the Book Embeding of Graphs"Discrete Applied Mathematics. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Enomoto and K. Ota: "Connected Subgraphs with Small Subgraphs with Small Degree Sums in 3-Connected Planar Graphs"Journal of Graph Theory. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Kozono, Y. Maeda and H. Naito: "A Yang-Mills-Higgs gradient flow on RィイD13ィエD1 blowing up at infinity"Proc. Japan Acad. 74 Ser. A, No.5. 71-73 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Omori, Y. Maeda, N. Miyazaki and A. Yoshioka: "Noncommutative 3-sphere; A model of noncommutative contact algebras"J. Math. Soc. Japan. 50. 915-943 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Ikeda, M. Yamashita and K. Yokoyama: "Remodeling a DS-diagram into one with E-cycle"Tpkyp J. Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I. Ishii: "A new condition for a Heegaard splitting to be reducible"(preprint).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I. Ishii: "Very special framed links for a homotopy 3-sphere"(preprint).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi