• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Laplace approximations and related limit theorems

Research Project

Project/Area Number 10640134
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKeio University

Principal Investigator

TAMURA Yozo  Keio Univ., Fac. Sci. and Tech., Prof., 理工学部, 助教授 (50171905)

Co-Investigator(Kenkyū-buntansha) TANAKA Hiroshi  Japan Women's Univ., Fac. Sci., Prof., 理学部, 教授 (70011468)
SUZUKI Yuki  Keio Univ., Fac. Sci. and Tech., Instr., 理工学部, 助手 (30286645)
MAEJIMA Makoto  Keio Univ., Fac. Sci. and Tech., Prof., 理工学部, 教授 (90051846)
TANEMURA Hideki  Chiba Univ., Fac. Sci., Ass. Prof., 理学部, 助教授 (40217162)
CHIYONOBU Taizo  Nagoya Univ., Grad. Sch. Math., Instr., 大学院・多元数理科学, 助手 (50197638)
Project Period (FY) 1998 – 1999
Keywordslarge deviation / Laplace approximation / random environment
Research Abstract

1. On the problem for Laplace approximateion for large deviation principle first of all, we got a general framework of the precise estimate of the usual Laplace approximation order for non-symmetric Markovian processes in the case that the Hessian of the free energy functional may be degenerate. Secondly, for the non-usual order problem of Laplace approximations for large deviation principle, the new type of limit theorem was obtained by mainly Prof. T. Chiyonobu in the case of I.I.d. random variables under suitable conditions motivated by the limit theorems of random matrices.
2. On the problems for the distributions of stochastic processes in random environments, firstly, mainly Profs. H. Tanaka and Y. Suzuki got the new type of limit theorem for one-dimensional diffusion processes with one- sided Brownian potential. Secondly a homogenization result was obtained for a random walk on some kind of fraktals with H. Takahashi related to some results for critical phenomena. On the other hand, on the problem of infinitely many balls reflecting mutually and with suitable potentials, mainly Prof. H. Tanemura constructed such infinitely many balls system through SDE method.
3. On the problems for self similar processes, we got some result for multidimensional infinitely divisible distributions and their projections with Prof. M. Maejima. We also introduced the operator semi-selfsimilar processes and got some basic properties with Prof. M. Maejima and T. Saigo.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] M. Maejima et al: "Some multivariate infinitely divisible distributions and their projections"Probability and Mathematical Statistics.. 19(to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Chiyonobu: "A limit formula for a class of Gibbs measures with long range pair interactions"J. Math. Sciences, The Univ. Tokyo. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K. Kawazu et al: "A diffusion process with a one-sided Brownian potentials"Tokyo J. Math.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Katori et al: "Survival probabilities for discrete time models in one dimension"J. Statistical Physics. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Maejima et al: "Semi selfsimilar processes"J. Theoretical Probability. 12. 347-383 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Maejima et al: "Operator semi-decomposability, (CQ)-decomposability and related nested classes"Tokyo J. Math. 22. 473-509 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Maejima, K. Suzuki and Y. Tamura: "Some multivariate infinitely divisible distributions and their projections"Probab. Math. Statist. 19 (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Chiyonobu: "A limit formula for a class of Gibbs measures with long range pair interactions"J. Math. Scia, Univ. Tokyo. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Kawazu, Y. Suzuki and H. Tanaka: "A diffusion processes with a one-sided Brownian potential,"Tokyo J. Math. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Katori, N. Konno and H. Tanemura,: "Survival probabilities for discrete time models in one dimension,"J. Statist. Phys. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Maejima and K. Sato,: "Semi selfsimilar processes"J. Theor. Probab. 12. 347-383 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Maejjma, K. Sato and T. Watanebe,: "Operator semi-selfdecomposability, (C,Q)-decomposability and related nested classes"Tokyo J. Math. 22. 473-509 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi