• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Finite dimensional integrable structure in systems with infinite degree of freedom

Research Project

Project/Area Number 10640165
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

TAKASAKI Kanehisa  Kyoto Univ, Integrated Human Studies, Ass, Professor, 総合人間学部, 助教授 (40171433)

Co-Investigator(Kenkyū-buntansha) SAKURAGAWA Takashi  Kyoto Univ, Integrated Human Studies, Ass, Professor, 総合人間学部, 助教授 (60196136)
VEDA Tetsuo  Kyoto Univ, Integrated Human Studies, Professor, 総合人間学部, 教授 (10127053)
UE Masaaki  Kyoto Univ, Integrated Human Studies, Ass, Professor, 総合人間学部, 助教授 (80134443)
USHIKI Shigehiro  Kyoto Univ, Graduate School of Human and Environmental Studies, Professor, 大学院・人間・環境学研究科, 教授 (10093197)
HATA Masayoshi  Kyoto Univ, Integrated Human Studies, Ass, Professor, 総合人間学部, 助教授 (40156336)
Project Period (FY) 1998 – 1999
Keywordsintegrable system / Whitham deformation / isomonodromic deformation / supersymmetric field theory / topological field theory / solvable spin system / conformal field theory / Toda lattice
Research Abstract

This research project aimed to search for various finite dimensional integrable systems in systems with infinite degrees of freedom, and to elucidate their mathematical structures. Related issues on geometry and non-integrable systems were also investigated.
The head investigator obtained interesting results on Whitham deformation equations, isomonodromic deformations, systems arising in supersymmetric/topological gauge theories and Calogero-Moser systems, all of which are mutually related. Firsly, he could find an explicit form of the Whitham deformation equations for asymptoci description of isomonodromic systems on the Rie-mann sphere. Secondly, an extension, to a torus, of such isomonodromic systems was achieved on the basis of methods in solvable spin sysmtes and conformal field theories. Thirdly, he clarified the roles that the tau functions and the Whitham deformations play in four dimensional supersymmetric and topolotical gauge theories. Finally, he considered the elliptic Calogero-Moser systems, which are also closely related to four dimensional supersymmetric gauge theories, and discoveref that a non-autonomous analogues of those systems give an example of isomonodromic dermations on a torus.
The achievement due to other members of the project group respectively ranges over low-dimensional topology, stochastic analysis of hypoelliptic operators, complex dynamical systems, transcendental number theory related to nonlinear dynamical systems, celular automata, intelligent agents, hypoelliptic and hyperbolic equations with infnite degeneracy,

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] 高崎 金久: "Whitham Deformations and Tan Functions in N=2 Supersymmetric Gauge Theories"Prog.Theor.Phys.Suppl.. 135巻. 53-74 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 高崎 金久: "Elliptic Calogero-Moser Systems and ISOmonodromic Deformations"J.Math.Phys. 40巻11号. 5787-5821 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 高崎 金久: "Calogero-Moser Models IV:Limits to Toda theory"Prog.Theor.Phys.. 102巻4号. 749-776 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 高崎 金久: "Integrable Hierachies and Contact Terms in u-plane Integrals of Topologically Twisted Supersymmetric Gauge Theories"Int.J.Mod.Phys.. 14巻7号. 1001-1013 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 高崎 金久: "Whitham Deformations of Seiberg-Witten Curres for Classical Gauge Groups"Int.J.Mod.Phys.A. (未定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 高崎 金久: "Calogero-Moser Models II:Symmetries and Foldings"Prog.Thero.Phys.. 101巻3号. 487-518 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kanehisa Takasaki: "Whitham Deformations and Tan Functions in N=2 Supersymmetric Gange Theories"Prog. Theor. Phys. Suppl. Vol.135. 53-74 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kanehisa Takasaki: "Elliptic Calogero-Moser Systems and Isomonodromic Deformations."J. Math. Phys. Vol.40 No.11. 5787-5821 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kanehisa Takasaki: "Calogero-Moser Models IV : Limits to Toda theory"Prog. Theor. Phys. Vol.102 No.4. 749-776 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kanehisa Takasaki: "Integrable Hierarchies and Contact Terms in u-plane Integrals of Topologically Twisted Supersymmetric Gange Theories."Int. J. Mod. Phys. Vol.14 No.7. 1001-1013 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kanehisa Takasaki: "Whitham Deformations of Seiberg-Witten Curves for Classical Gauge Groups"Int. J. Mod. Phys. A. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kanehisa Takasaki: "Calogero-Moser Models II : Symmetries and Foldings"Prog. Thero. Phys. Vol. 101 No. 3. 487-518 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi