• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Annual Research Report

擬等角写像の変分公式の研究

Research Project

Project/Area Number 10640173
Research InstitutionYamaguchi University

Principal Investigator

柳原 宏  山口大学, 工学部, 助教授 (30200538)

Co-Investigator(Kenkyū-buntansha) 郷間 知巳  山口大学, 理学部, 助手 (70253135)
増本 誠  山口大学, 理学部, 助教授 (50173761)
加藤 崇雄  山口大学, 理学部, 教授 (10016157)
松野 好雅  山口大学, 工学部, 教授 (30190490)
柳 研二郎  山口大学, 工学部, 教授 (90108267)
Keywords特異積分作用素 / 擬等角写像 / 変分公式 / Beltrami微分 / Bloch函数 / 歪曲評価 / 増大度評価 / 大域解
Research Abstract

任意に固定した正則函数について,これを含む1パラメータファミリーを正則性を保ったまま構成するには,一旦正則性を諦め,より弱い条件である擬等角性を保ったファミリーを考え,それをさらに正則になるように擬等角写像を用いて修正するという方法が有効である.この為には,擬等角写像がBeltrami微分にどのように依存するかを記述する変分公式を求めておくことが重要である.
上記の動機と発想のもとで擬等角写像の変分公式の研究に取り組んできたが,研究が進むにつれ,この問題は変分公式のみならず擬等角写像の大域的な構成法に関わる重要な問題であることが判明してきている.従来大域的な擬等角写像の構成法としては,Beltrami方程式の局所的な解として得られる局所的な擬等角写像を合成等により張り合せるという方法が用いられてきた.これが本研究中に示された方法を用いればBeltrami方程式自体が大域的に解け,これより擬等角写像が張り合せによらず一挙に構成することができる.残念ながらこの新しい方法では,擬等角写像の定義域を大域的にすることができるものの,Beltrami微分のノルムについては十分小さく無ければならないという付帯条件が付く.この付帯条件をどれだけ弱められるかが今後の課題である.
また本来の正則写像の変分公式の応用について目標とする所のBloch函数について,歪曲定理と増大度の評価についての結果を得ている.

  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] K.Yanagi: "An upper bound to the capacity of discrete time Gaussian channel with feedback,III" Bull.Kyushu Inst.Tech.45. 1-8 (1998)

  • [Publications] H.W.Chen and K.Yanagi: "Refinement of factor-of-two bound for capacity in Gaussian channel with feedback and related inequality" Proceedings on 1998 International Symposium on Information The-ory. 128- (1998)

  • [Publications] Y.Matsuno: "The small dispersion limit of the Benjamin-Ono equation and the evolution of the step initial condition" Journal of the Physical Society of Japan. 67. 1814-1817 (1998)

  • [Publications] M.Hayashi and K.Kato: "Point separation of a two-sheeted disc by boounded abalytic functions" Hokkaido Math.J.Proc.27. 553-565 (1998)

  • [Publications] T.Kato,C.Keem and A.Ohbuchi: "Variety of special linear systems on k-sheeted coverings" Geom.Dedicata. 69. 53-65 (1998)

  • [Publications] T.Gouma: "Ahlfors functions on non-planar Riemann surfaces whose double are hyperelliptic" J.Math.Soc.Japan. 50. 685-695 (1998)

URL: 

Published: 1999-12-11   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi