• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Analysis of dimensional and recursive properties for almost periodic solutions of nonlinear partial differential equations

Research Project

Project/Area Number 10640178
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKUMAMOTO UNIVERSITY

Principal Investigator

NAITO Koichiro  Kumamoto Univ., Dept.Eng., Prof., 工学部, 教授 (10164104)

Co-Investigator(Kenkyū-buntansha) TAIZO Sadahiro  Kumamoto Pref.Univ., Dept.Adm., A-Lect., 総合管理学部, 助手 (00280454)
KADOTA Noriya  Kumamoto Univ., Dept.Eng., Lect., 工学部, 講師 (80185884)
OSHIMA Yoichi  Kumamoto Univ., Dept.Eng., Prof., 工学部, 教授 (20040404)
Project Period (FY) 1998 – 2000
Keywordsnonlinear evolution equation / almost periodicity / quasi-periodicity / fractal dimension / correlation dimension / tiling / Diophantine approximation / self-similarity
Research Abstract

In recent years great efforts have been made to analyze complexity or chaotic behaviors in the study of dynamical systems. In this research we investigate fractal dimensions and recursive properties of orbits for quasi-periodic dynamical systems and then, we apply the abstract results to almost or quasi-periodic solutions for nonlinear partial differential equations. In [1] (of 11.REF.) we estimate correlation dimensions of discrete quasi-periodic orbits by using the parameters derived from some algebraic properties of the irrational frequencies. On the other hand, in [2], we study recursive properties of the quasi-periodic orbits by defining recurrent dimensions and show inequality relations between the correlation dimensions and the recurrent dimensions. To estimate these dimensions we introduce new class of irrational numbers, quasi Roth numbers, quasi or weak Liouville numbers, which are classified according to badly approximable properties or (extremely) good properties for the rational approximations, respectively.
Furthermore, in [2] and [3] we investigate quasi-periodic solutions of nonlinear partial differential equations with quasi periodic perturbations and estimate these dimensions of the attractors.
Fractal dimensions are most essential in the sense that they show the level of complexity, or selfsimilarity or randomness. On the other hand, it is well known that periodic or almost periodic states occupy the important positions as main gateways in various routes to chaos. In the following papers (of 11.REF.) by the head and co-investigators we have shown various fundamental results, which will play important and essential roles for investigating chaotic behaviors of nonlinear dynamical models.

  • Research Products

    (26 results)

All Other

All Publications (26 results)

  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic orbits with frequencies given by quasi Roth numbers"J.Korean Math.Soc.. 37. 857-870 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Koichiro Naito: "Fractal dimensions and epsilon syncronicity of multidimensional quasi periodic systems"Dynam.Conti.Discr.Impuls.Systems. 7. 223-238 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Koichiro Naito: "Recurrent Dimensions of Quasi-Periodic Orbits with Irrational Frequencies given by Quasi Liouville Numbers"Proceedings of The 3^<rd> World Congress of Nonlinear Analysts 2000. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic orbits with frequencies given by Roth numbers"Differential equations and applications (Chinju, 1998), Nova Sci. Publ.. 119-129 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Oshima: "Certain ratio limit theorem for time inhomogeneous Markov chains"Stochastic Processes, Physics and Geometry. 96-109 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Oshima: "On the exceptionality of some semipolar sets of time inhomogeneous Markov processes,"Tohoku Math.Journal. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Taizo Sadahiro: "Coloring solitaire tilings"Yokohama Mathematical Journal. 48(to appear). (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Taizo Sadahiro: "Dimension estimate for a set obtained from a three-dimensional non-periodic self-affine tiling"Scientae Mathematicae Japonicae. 4(to appear). (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 貞広泰造: "非周期的自己アフィンタイル貼りにおけるタイルの境界集合の構成と彩色"情報処理学会論文誌. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Akiyama,T.Sadahiro: "Self-similar tiling generated by the minimal Pisot number"Acta.Math.Inform. Univ.Ostravienstis. 6. 9-26 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 田中一之,角田法也 他: "数学の基礎をめぐる論争"シュプリンガー フェアラーク 東京. 213 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic orbits with frequencies given by quasi Roth numbers"J.Korean Math.Soc.. 37. 857-870 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Koichiro Naito: "Recurrent dimensions of quasi-periodic orbits with Irrational Frequencies given by quasi Liouville numbers"Proc.WCNA. (to appear). (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Koichiro Naito: "Fractal dimensions and ε-syncronicity of multidimensional quasi periodic systems"Dynam.Conti.Discr.Impuls.Sys.. 7. 223-238 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Koichiro Naito: "Recurrent dimensions of quasi-periodic orbits with frequencies given by weak Liouville numbers"Kokyu-roku R.I.M.S.Kyoto Univ.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic orbits with frequencies given by Roth numbers"Diff.Eq.Appl.. 111-129 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic trajectories for evolution equations"Kokyu-roku R.I.M.S.Kyoto Univ.. 1136. 96-109 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Koichiro Naito: "Lower estimates of dimensions for quasi-periodic orbits"Kokyu-roku R.I.M.S.Kyoto Univ.. 1031. 110-125 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoichi Oshima: "On the exceptionality of some semipolar sets of time inhomogeneous Markov processes"Tohoku Math.Journal. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoichi Oshima: "Certain ratio limit theorem for time inhomogeneous"Stoch.Processes, Phy.Geom.. 29. 533-538 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Taizo Sadahiro: "Coloring solitaire tilings"Yokohama Math.J.. 48 (to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Taizo Sadahiro: "Dimension estimate for a set obtained from a three-dimensional non-periodic self-affine tiling"Sci.Math.Japon.. vol.4 (to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sadahiro, K.Sakurai: "Construction and coloring of boundaries for non-periodic self-affine tilings"Joho Shori Gakkai Ronbunshi. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Taizo Sadahiro: "Some computational results on dual Pisot tiling"Proc.Int.Conf.Discr.Dyn.Finite Automata, Combinatorics Urumqi. 15 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Taizo Sadahiro: "Periodic colorings of aperiodic self-similar tilings"Proc.Jap.Conf.Discr.Comp.Geom.'99. 38-39

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sadahiro, S.Akiyama: "Self-similar tiling generated by the minimal Pisot number"Acta.Math.Inform.Univ.Ostravienstis. 6. 9-26 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi