• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

n-harmonic maps and conformal structures on manifolds

Research Project

Project/Area Number 10640209
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionYamaguchi University

Principal Investigator

NKAUCHI Nobumitsu  Yamaguchi University, Faculty of Science, associate professor, 理学部, 助教授 (50180237)

Co-Investigator(Kenkyū-buntansha) TAKAKUWA Shoichiro  Tokyo Metropolitan University, Faculty of Science, associate professor, 理学部, 助教授 (10183435)
TAKEUCHI Hiroshi  Shikoku University, Faculty of Management and Information Science, professor, 経営情報学部, 教授 (20197271)
KAWAI Shigeo  Saga University, Faculty of Culture and Education, professor, 文化教育学部, 教授 (30186043)
KATO Shin  Osaka City University, Faculty of Science, associate professor, 理学部, 助教授 (10243354)
KOBAYASHI Osamu  Kanazawa University, Faculty of Science, professor, 理学部, 教授 (10153595)
Project Period (FY) 1998 – 1999
Keywordsn-harmonic map / p-harmonic map / conformal structure / manifold / variational problem
Research Abstract

With applications to the geometry of conformal structures in mind, we studied p-harmonic maps and n-harmonic maps. From some points of view, we considered the case in which the source or the target is the standard sphere. We obtained a regularity result for p-harmonic maps into the sphere. Though the concept of p-harmonic maps are, speaking formally, a generalization of that of harmonic maps, we are often in the face of different features and some difficulties. We give the following summary of what are main difficulties in the study of p-harmonic maps :
(1) The p-harmonic map equation is ellptic, but degenerate unless p = 2.
(2) In several cases, there exist some nontrivial terms which vanishes only when p = 2
(3) The exponent or the index "2" in the case of harmonic maps (p = 2) has various different meanings for general p, for example, p, 2p - 2, …, which are all equal to 2 when p = 2.
Some cases in the above difficulties can be controled with some tricks. In the Bochner-Weitzenbock formula, for example, we can make nontrival terms in case of p ≠ 2 vanish in a certain integral formula. As for the rest cases in the above difficulties, new techniques are necessary and we have a hope of them in the study in the future.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Nobumitsu Nakauchi: "On the existence of n-hamonic map"Comp.Math.. 117. 33-43 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shigeo Kawai: "p-hamonic maps; and convex functions"Geom.Dedicata. 74. 261-265 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hircshi Takeuchi: "On the first eigenvalue of p-Laplacian in a Riemannian manifold"Tokyo J.Math.. 21. 135-140 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shoichiro Takakuwa: "A compactness theorem for harmonic maps"Differential Integral Equations. 11. 169-178 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Osamu Kobayashi: "Vertices of curves with complementary shells"Kobe J.Math.. 15. 59-65 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shin Kato: "General existence of minimal surfaces of genus zero with catenoid ends and prescribed flux"Comm.Anal.Geom.. 8. 83-114 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shigeo Kawai, Nobumitsu Nakauchi & Hiroshi Takeuchi: "On the existence of n-harmonic map"Comp. Math.. 117. 33-43 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shigeo Kawai: "p-harmonic maps and convex functions"Geom. Dedicata. 74. 261-265 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroshi Takeuchi: "On the first eigenvalue of the p-Laplacian in a Riemannian manifold"Tokyo J. Math. 21. 135-140 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shoichiro Takakuwa: "A compactness theorem for harmonic maps"Differential Integral Equations. 11. 169-178 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Osamu Kobayashi: "Vertices of curves with complementary shells"Kobe J. Math. 15. 59-65 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shin Kato: "General existence of minimal surfaces of genus zero"Comm. Ann. Geom.. 8. 83-114 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi