• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Conversion of Resolution and Intensity using Cellular Neural Networks

Research Project

Project/Area Number 10650379
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 情報通信工学
Research InstitutionSOPHIA UNIVERSITY

Principal Investigator

TANAKA Mamoru  Sophia University, Dept.E.and E.Eng., Professor, 理工学部, 教授 (00146804)

Co-Investigator(Kenkyū-buntansha) JIN'NO Kenya  Nippon Institute of Technology, Dept.Eng., Lecturer, 工学部, 講師 (50286762)
Project Period (FY) 1998 – 2000
KeywordsCellular Neural Network / Retina Information / Image Quantization / Energy Minimization / Conversion of Intensity
Research Abstract

The spatio-temporal dynamics by CNN(Cellular Neural Network) must generate nonlinear interpolative effects which have not been generated by a conventional image processing by sequential machine. In this research, a high quality secondary color image can be generated by using the CNN spatio-temporal dynamics for any resolution for both of a dense gradation image and an area intensity image. The dense gradation image is got from the area intensity image generated from the spatio-temporal dynamics of the CNN.Each cell of the CNN controls on-off state of the corresponding area element in pixel and then the intensity of each pixel can be controlled by changing the number of area elements per each pixel. That is, multi-value intensity can be generated by only using a set of 1-bit cells in the universal CNN.The number of bits per pixel for color density should be controlled efficiently by the number of pixels for a given input resolution because high density is required for low resolution and low density is enough for high resolution. This auto-resolution is very useful from practical viewpoints.
The CNN can be used efficiently for the auto-resolotion because the number of inner cells in each pixel is controlled automatically, even if the number of quantized levels of inner cell is only 2 (binary). The problem is how the color density per pixel can be generated by using spatio-temporal dynamics by a set of inner cells in each pixel. The problem can be solved based on a conversion from spatial area intensity process to density process in each pixel. The CNN for auto-resolotion has hierarchical structure in which a global CNN consists of cells corresponding to the number of pixels in an image and a local CNN consists of real inner cells. The discrete time CNN has been designed as a chip by using Parthenon high level language developed by NTT.

  • Research Products

    (18 results)

All Other

All Publications (18 results)

  • [Publications] 神野健哉,田中衞: "ヒステリシス量子化器"電子情報通信学会論文誌D. J81・A・6. 980-987 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大西美穂,池上宗光,丹治裕一,神野健哉,田中衞: "離散時間セルラニューラルネットワークを用いた静止画像の中間調表現"Journal of Signal Processing. 3・6. 491-498 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nakaguchi, K.Jin'no, and M.Tanaka: "Hysteresis Neural Networks for N-Queens Problems"IEICE Trans. Fundamentals. E82-A・9. 1851-1854 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 近藤大輔,丹治裕一,田中衞: "RBFネットワークを用いた画像符号化手法の拡張"電子情報通信学会論文誌A. J83-A・10. 1213-1217 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Tanji and M.Tanaka: "Hierarchical Least-Squares Algorithm for Macromodeling High-Speed Interconnects Characterized by Sampled Data"IEICE Trans. Fundamentals. E83-A・9. 1833-1843 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nakaguchi, S.Isome, K.Jin'no and M.Tanaka: "Box Puzzling Problem Solver by Hysteresis Neural Networks"IEICE Trans. Fundamentals. in Press. (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 内本 大介、沼田 肇、丹治 裕一、田中 衞: "離散時間セルラーニューラルネットワーク画像処理プロセッサの設計"電子情報通信学会論文誌. J84・D・II. 1464-1474 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 田中 衞: "セルラーニューラルネットワークによる時空間ダイナミクス"電子情報通信学会誌. 81・7. 747-757 (1988)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 田中衞,斎藤利通: "ニューラルネットと回路"(株)コロナ社. 222 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] JIN'NO, Kenya: "Hysteresis Quantizer"IEICE Japan. J81-A-6. 980-987 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] OHNISHI, Miho: "Image Intensity Conversion Using Discrete Time Cellular Neural Networks"J.Signal Processing. Vol.3, No.6. 491-498 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] NAKAGUCHI, Toshiya: "Hysteresis Neural Networks for N-Queens Problems"IEICE Trans.Fundamentals. E82-A-9. 1851-1854 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KONDO, Daisuke: "An Extension of Image Coding by Radial Basis Function Networks"IEICE Japan. J83-A-10. 1213-1217 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] TANJI, Yuichi: "Hierarchical Least-Squares Algorithm for Macromodeling High-Speed Interconnects Characterized by Sampled Data"IEICE Trans.Fundamentals. E83-A-9. 1833-1843 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] NAKAGUCHI, Toshiya: "Box Puzzling Problem Solver by Hysteresis Neural Networks"IEICE Trans.Fundamentals. (in Press).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] UCHIMOTO, Daisuke: "Design of Discrete-Time Cellular Neural Networks Image Processor"IEICE Japan. J84-D-II-7. 1464-1474 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] TANAKA, Mamoru: "Spatio-Temporal Dynamics by Cellular Neural Networks"IEICE Japan. Vol.81, No.7. 747-757 (1988)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] TANAKA, Mamoru: "Neural Net and Circuits"CORONA PUBLISHING. 222 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi