• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Statistical Inference on cross sectionally contoured distributions

Research Project

Project/Area Number 10680313
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Statistical science
Research InstitutionThe University of Tokyo

Principal Investigator

TAKEMURA Akimichi  University of Tokyo, Faculty of Economics, Professor, 大学院・経済学研究科, 教授 (10171670)

Co-Investigator(Kenkyū-buntansha) KAMIYA Hidehiko  Okayama University, Faculty of Economics, Lecturer, 経済学部, 講師 (50300687)
Project Period (FY) 1998 – 1999
Keywordsmultivariate analysis / invariance / Gaussian process
Research Abstract

In this research we have obtained some important results concerning the theory of cross sectionally contoured distributions and related problems of statistical inference. Takemura and Kamiya have separately published a survey papers (in Japanese) in Proceedings of the Institute of Statistical Mathematics, Vol. 47, No. 1 (1999).
Takemura with coauthor Satoshi Kuriki gives a survey on the tube method and the Euler characteristic method for obtaining the tail probability of the maximum of Gaussian field. This methodology is a topic of intense current research. Kamiya has developed a characterization of invariant probability models based on the functional form of the density function.
Some other results include the discussion paper by Kamiya and Takemura :
"Rankings generated by spherical discriminant analysis", Discussion Paper CIRJE-F-15, Faculty of Economics, Univ. of Tokyo (1998), which is going to appear in the Journal of the Japan Statistical Society.
Takemura with coauthor Kuriki published a paper on principal component analysis in Communications in Statistics.

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] Akimichi Takemura (Satoshi Kuriki 共著): "Shrinkage to smooth non-convex cone: principal component analysis as Stein estimation"Commun. Statist. - Theory Meth.. 28. 651-669 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 竹村彰通(栗木哲共著): "正規確率場の最大値の分布-tubeの方法とEuler標数の方法-"統計数理. 47・1. 201-221 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 紙屋英彦: "不変確率モデルの特徴付け"統計数理. 47・1. 63-69 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Akimichi Takemura: "Some superpopulation models for estimating the number of population uniques"Statistical data protection proceedings of the conference, Lisbon March 1998. 45-58 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hidehiko Kamiya and Akimichi Takemura: "Rankings generated by spherical discriminant analysis"Journal of the Japan Statistical Society. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Akimichi Takemura and Satoshi Kuriki: "Shrinkage to smooth non-convex cone : principal component analysis as Stein estimation"Commun. Statist. - Theory Meth.. Vol. 28. 651-669 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Satoshi Kuriki and Akimichi Takemura: "Distribution of the maximum of Gaussian random field : tube method and Euler characteristic method. (in Japanese)"Proceedings of the Institute of Statistical Mathematics. Vol. 47. 201-221 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hidehiko Kamiya: "Characterization of Invariant Probability Models (in Japanese)"Proceedings of the Institute of Statistical Mathematics. Vol. 47. 63-69 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Akimichi Takemura: "Some superpopulation models for estimating the number of population uniques"Statistical data protection proceedings of the conference, Lisbon Mach. 1998. 45-58 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hidehiko Kamiya and Akimichi Takemura: "Rankings generated by spherical discriminant analysis"Journal of the Japan Statistical Society. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi