• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Research on the application of genetic algorithms on a machine translation method using inductive learning

Research Project

Project/Area Number 10680367
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionHOKKAIDO UNIVERSITY

Principal Investigator

TOCHINAI Koji  Hokkaido Univ., Grad. School of Eng., Prof., 大学院・工学研究科, 教授 (50001178)

Co-Investigator(Kenkyū-buntansha) ARAKI Kenji  Hokkaido Univ., Grad. School of Eng., Assoc. Prof., 大学院・工学研究科, 助教授 (50202742)
Project Period (FY) 1998 – 1999
KeywordsInductive Learning / Natural Language Processing / Example-Based Machine Translation / Genetic Algorithms / Selection of Translation Words / Cohesive Relations of Pronouns
Research Abstract

This research deals with the example-based natural language processing using inductive learning . And the research especially focuses to apply genetic algorithms to the example-based machine translation, and to find methods for acquisition of translation rules from small quantity of examples, high speed retrieval of rules and effective deletion of erroneously acquired rules.
To assure the effectiveness of the proposed method, several experiments for the performance evaluation are carried out, and the usefulness of inductive learning to the example-based natural language processing are confirmed.
Principal results of the research are as follows:
1) The usefulness of applying genetic algorithms to the machine translation using inductive learning are confirmed through experiments using the examples from guidebooks of travel english conversation.
2) As the results of above experiments, cases of invalid rule acquisition which are not removed by the selection process of genetic algorithms are found. To resolve this problem, a method using similarities between previous translation examples as constraint conditions to determine the cross point is developed, and the translation quality is improved.
3) This method is applied to translation word selection problem of the machine translation, and the ability of selecting highly appropriate words is proved through experiments.
4) A translation method is proposed , which extracts translation patterns similar to target sentences from examples in a corpus using inductive learning, and the effectiveness of the method is assured by several experiments.
5) As the another types of application of the inductive learning, acquisition of translation rules from surface sentences to semantic expressions, decision of cohesive relations of pronouns, and so on, are studied, and meaningful results are obtained.

  • Research Products

    (20 results)

All Other

All Publications (20 results)

  • [Publications] Y.Sato, K.Araki, K.Tochinai: "A Method for Resolving Cohesive Relations of Unknown Words in Text Structure"Proc. IASTED Int. Conf. ASC-98. 179-182 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Sasaoka, K.Araki, Y.Momouchi, K.Tochinai: "Evaluation of Prediction Method of Target Words Using Inductive Learning"Proc. IASTED Int. Conf. ASC-98. 183-186 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 森英悟,荒木健治,宮永喜一,栃内香次: "帰納的学習を用いた表層文から意味表現への変換規則の自動獲得と適用"電子情報通信学会論文誌D-II. 81-D-II. 1621-1630 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 笹岡久行,荒木健治,桃内佳雄,栃内香次: "帰納的学習を用いた訳語選択手法の派生語および複合語における有効性の評価"電子情報通信学会論文誌D-II. 81-D-II. 2146-2158 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Andriamanakasina, K.Araki, K.Tochinai: "Sub-Sentential Alignment Method by Analogy"Proc. PACLIC-13. 277-284 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Echizen-ya, K.Araki, Y.Momouchi, K.Tochinai: "A Study of Performance Evaluation for GA-ILMT Using Travel English"Proc. PACLIC-13. 285-292 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] タンテリ アンドリアマナカシナ ,荒木健治,栃内香次: "実例を用いた類推による対応関係推定手法"情報処理学会論文誌. 40. 2918-2926 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Andriamanakasina, K.Araki and K.Tochinai: "Example-Based Machine Translation of Part-Of-Speech Tagged Sentences by Recursive Division"Proc. Machine Translation Summit VII. 509-517 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 工藤晃一,越前谷博,荒木健治,桃内佳雄,栃内香次: "学習型機械翻訳手法に適用された遺伝的アルゴリズムにおける知識による制約の有効性について"電子情報通信学会論文誌D-II. 81-D-II. 2035-2047 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Matsuhara, K.Araki, Y.Momouchi and K.Tochinai: "Evaluation of Number-Kanji Translation Method of Non-Segmented Japanese Sentences Using Inductive Learning"Proc.12th Australian Jonint Conference on Artificial Intelligence. 474-475 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y. Sato, K. Araki and K. Tochinai: "A Method for Resolving Cohesive Relations of Unknown Words in Text Structurer"Proc. IASTED Int. Conf.. ASC-98. 179-182 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Sasaoka, K. Araki, Y. Momouchi and K. Tochinai: "Evaluation of Prediction Hethod of Target Words Using Inductive Learning"Proc. IASTED Int. Conf.. ASC-98. 183-186 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] E. hori, K. Araki, Y. Miyanaga and K. Tochinai: "Automatic Acquisition and Application of Translation Rules from Sentences to Semantic Representations Using Indutive Learning"Trans. IEICE D-II. Vol.81-D-II. 1621-1630 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Sasaoka, K. Araki, Y. momouchi and K. Tochinai: "Evaluation of Prediction Method of Target Word Using Inductive Learning for Unknown Derivative Words and Compound Words"Trans. IEICE D-II. Vol.81-D-II. 2146-2158 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Andriamanankasina, K. Araki and K. Tochinai: "Sub-Sentential Alignment Method by Analogy"Proc. PACLIC-13. 277-284 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Echizen-ya, K. Araki, Y. Homouchi and K. Tochinai: "A Study of Performance Evaluation for GA-ILMT Using Travel English"Proc. PACLIC-13. 285-292 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Andriamanankasina, K. Araki and K. Tochinai: "Example-based Sub-Sentential Alignment Method by Analogy"Trans IPSJ. Vol.40. 2918-2926 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Andriamanankasina, K. araki and K. Tochinai: "Example-Based Machine Translation of Part-Of-Speech Tagged Sentences by Recursive Division"Proc. Machine Translation Summit-VII. 509-517 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Kudou, H. Echizen-ya, K. Araki, Y. Homouchi and K. Tochinai: "Effectiveness of Constraint by Knowledge for Genetic Algorithms in Machine Translation with Learning"Trans IEICE D-II. Vol.81-D-II. 2035-2047 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Matsuhara, K. Araki, Y. Homouchi and K. Tochinai: "Evaluation of Number-Kanji Translation Method of Non-Segmented Japanese Sentences Using Inductive Learning"Proc. 12th Australian Jonint Conference on Artificial Intelligence. 474-475 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi