• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Annual Research Report

大規模組合せ的システムの劣モジュラ構造に関する基礎的研究

Research Project

Project/Area Number 10680429
Research InstitutionOsaka University

Principal Investigator

藤重 悟  大阪大学, 大学院・基礎工学研究科, 教授 (10092321)

Keywords劣モジュラ関数 / 組合せ最適化 / 離散アルゴリズム
Research Abstract

今回の科学研究費補助金による最大の成果は,一般の劣モジュラ関数を最小化する効率的な,強多項式時間アルゴリズムを導いたことである.これはこれまで約20年の間,組合せ最適化の研究者にとって最も重要な未解決問題の1つであった.これによって,劣モジュラ・フロー問題など,劣モジュラ関数最小化が効率よくできることを前提にモデル化されアルゴリズムが提案されている多くの問題に対して,効率的アルゴリズムの構成を保証することになった.
以上の成果は世界的にも大変大きなインパクトのあるものであるが,その他にも以下のような成果を得ている.
対称な劣モジュラ関数の最小化のためのM.Queyrannneによるアルゴリズムの妥当性の簡単な証明を与えた.また,凹関数から派生する劣モジュラ関数の最小化に関して,パラメトリック最大フロー・アルゴリズムによる解法を示した.さらに,対称な劣モジュラ関数を一般化した正モジュラ関数による多面体の線形不等式表現に関して,非冗長な制約式に対応する集合の全体がラミナーな族をなすことを示した.そして,Faigle-Kernによって研究されている双対貪欲多面体が,劣モジュラ・フロー多面体のクラスに属することを明らかにした.その他には,劣モジュラ関数最小化とも密接に関係する多面体上の最小ノルム点問題に対して,点の凸結合として表現される多面体とアフィン空間との交わり上での最小ノルム点問題を解くアルゴリズムを提案した.

  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] S.Fujishige: "Another simple proof of the validity of Nagamochi and Ibaraki's min-cut algorithm and Queyranne's extension to symmetric submodular function minimization"Journal of the Operations Research Society of Japan. 41. 626-628 (1998)

  • [Publications] S.Fujishige and S.Iwata: "Minimizing a submodular function arising from a concave function"Discrete Applied Mathematics. 92. 211-215 (1999)

  • [Publications] S.Fujishige: "A laminarity property of the polyhedron described by a weakly posi-modular set function"Discrete Applied Mathematics. 100. 123-126 (2000)

  • [Publications] S.Fujishige,X.Liu and X.Zhang: "An algorithm for solving the minimum norm point over the intersection of a polytope and an affine set"Journal of Optimization Theory and Applications. (to appear).

  • [Publications] S.Fujishige and S.Iwata: "Algorithms for submodular flows"IEICE Transactions. (to appear).

  • [Publications] S.Fujishige: "A note on Faigle and Kern's dual greedy polyhedra"Mathematical Programming. (to appear).

URL: 

Published: 2001-10-23   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi