• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Annual Research Report

確率論および計算量理論による擬似乱数の研究

Research Project

Project/Area Number 10874022
Research InstitutionKyushu University

Principal Investigator

杉田 洋  九州大学, 大学院数理学研究科, 助教授 (50192125)

Co-Investigator(Kenkyū-buntansha) 安田 公美  九州大学, 大学院数理学研究科, 助手 (40284484)
櫻井 幸一  九州大学, 大学院システム情報科学研究科, 助教授 (60264066)
Keywords計算量 / 擬似乱数 / Weyl変換 / 無理数回転 / モンテカルロ法 / 数値積分
Research Abstract

計算量的に複雑な関数が解析学,特に確率論の中でどのような振る舞いをするか,というテーマで代表者自身が得た結果を記す.
s次元トーラスT^s上のWeyl変換(無理数回転)の軌道{x_n=x+nα}_nを考える.ここに,xは初期値,αは無理数(ベクトル)である.これを関数fに代入してできる列{f(x_n)}_nを(T^S,dx)上の確率過程と見なす.もちろん,これは独立確率変数列ではない.しかし,関数列{f^<(m)>}_mを関数がどんどん複雑になるように取ると,しばしば{f^<(m)>(x_n)}_nが独立確率変数列に分布収束することがある.
たとえば,金沢大学の高信敏氏と代表者杉田の共同研究で,非常に高い次元の変数に関して対称な関数の場合にこのような現象を示した.このような現象は関数f^<(m)>の解析的な量(たとえば全変動量)が複雑になる,というのでは不十分で真に計算量的に複雑性を増すものでないと現れないような印象を受ける.
また,同じく高信氏と杉田は複雑な関数の数値積分法について「ロバスト性」という概念を導入した.複雑な関数の数値積分のためにはランダムなサンプル方法が不可欠であるが,独立確率変数列によるサンプリング(古典的モンテカルロ法)ほどランダム性がなくても十分ロバストなサンプリングが可能であり,実際,ランダム化されたWeyl変換が現時点ではもっとも適切であるとした.この結果は,近々,学術誌に投稿する予定である.
このように,計算量的に複雑な関数とランダム性(正確には疑似乱数性)の関連は様々な現象で,もって解析的に観察されることが分かった.

  • Research Products

    (5 results)

All Other

All Publications (5 results)

  • [Publications] Hiroshi Sugita: "Applications of random Weyl sequences" Procealing of MCM'99,Varna Bulgaria. 発表予定. (1999)

  • [Publications] H.Sugita and S.Takanobu: "Limit theorem for symmetric statistics with respect to Weyl tromsformation :Disappearance of dependency" J.Math.Kyoto Univ.38・4(発表予定). (1998)

  • [Publications] K.Sakurai and H.Shizuya: "Astructnal comparison of the compatational difficulty of breaking discrete log cryptosystem" J.Cryptology. 11・1. 29-43 (1998)

  • [Publications] Kouichi Sakurai: "Practical proofs of Knowlege without relyingon theoretical proofs of membership on langwges." Theoret.Comput.Sci.181・2. 317-335 (1997)

  • [Publications] 檀浦詠介、櫻井幸一: "二通貨間為替交換問題に対するオンラインアルゴリズムの設計と解析," 情報処理学会論文誌. 66・1. 27-33 (1998)

URL: 

Published: 1999-12-13   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi