• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Comprehensive Studies on Hypergeometric and Painleve Systems

Research Project

Project/Area Number 11304007
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKobe University

Principal Investigator

NOUMI Masatoshi  Kobe University, Graduate School of Science and Technology, Professor, 大学院・自然科学研究科, 教授 (80164672)

Co-Investigator(Kenkyū-buntansha) SAITO Masahiko  Faculty of Science, Professor, 理学部, 教授 (80183044)
SASAKI Takeshi  Faculty of Science, Professor, 理学部, 教授 (00022682)
TAKANO Kyoichi  Faculty of Science, Professor, 理学部, 教授 (10011678)
MASUDA Tetsu  Graduate School of Science and Technology, Assistant, 大学院・自然科学研究科, 助手 (00335457)
YAMADA Yasuhiko  Faculty of Science, Professor, 理学部, 教授 (00202383)
Project Period (FY) 1999 – 2001
KeywordsPainleve equation / affine Weyl group symmetry / hypergeometric equation / configuration space / integrable system
Research Abstract

Main achievements of this research are summarized as follows.
1. Affine Weyl group symmetry of Painleve systems: Generalizing the structure of Backlund transformations for Painleve equations, Noumi and Yamada proposed a universal framework of Weyl group symmetry as groups of birational transformations. This class of groups of birational transformations is defined in terms of root systems, and has its origin in Kac-Moody groups. Also, they found a method for constructing a class of nonlinear (partial) differential equations of Painleve type by similarity reduction from the infinite integrable systems of Drinfeld-Sokolov. This work brought out a new unified point of view on the Lie theoretic background of the symmetry of Painleve equations.
2. Geometric aspects of hypergeometric and Painleve systems: In the joint work with Yoshida, Sasaki constructed the uniformizing differential equation for the moduli space of cubic surfaces. This system of linear differential equations, with Weyl group symmetry of type E_6, arises as a subsystem of the hypergeometric system of type E(3, 6) associated with hyperplane configurations. On the basis of Sakai's geometric approach to Painleve equations, Saito and others found a method of constructing the Painleve equations and their defining manifolds from the algebraic- geometric theory of deformations of rational surfaces.

  • Research Products

    (46 results)

All Other

All Publications (46 results)

  • [Publications] M.Noumi, Y.Yamada: "Symmetries in the fourth Painleve equation and Okamoto polynomials"Nagoya Math.J.. 153. 53-86 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Yamada: "Determinant formulas for the τ-functions of the Painleve equations of type A"Nagoya Math.J.. 156. 123-134 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Matano et al.: "On some Hamiltonian structures of Painleve systems. II"J.Math.Soc.Japan. 51. 843-866 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Sasaki, M.Yoshida: "The uniformizing differential equation of the complex hyperbolic structure on the moduli space of marked cubic surfaces"Proc.Japan Acad.Ser.A Math.Sci.. 75. 129-133 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Oaku, N.Takayama: "An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation"J.Pure Appl.Algebra. 139. 201-233 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Saito et al.: "Hypergeometric polynomials and integer programming"Compositio Math.. 115. 185-204 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Noumi, Y.Yamada: "Affine Weyl group symmetries in Painleve type equations"Toward the exact WKB analysis of differential equations, linear or non-linear, Kyoto University Press. 245-259 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Yamada: "Special polynomials and generalized Painleve equations"Adv.Stud.Pure Math.. 28. 391-400 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Takano: "Defining manifolds for Painleve equations"Toward the exact WKB analysis of differential equations, linear or non-linear, Kyoto University Press. 261-269 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Sasaki, M.Yoshida: "A system of differential equations in 4 variables of rank 5 invariant under the Weyl group of type E_6"Kobe J. Math.. 17. 29-57 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Majima et al.: "Quadratic relations for confluent hypergeometric functions"Tohoku Math.J.. 52. 489-513 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Oaku et al.: "A localization algorithm for D-modules"J.Symbolic Comput.. 29. 721-728 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Noumi, Y.Yamada: "Birational Weyl group action arising from a noilpotent Poisson algebra"Physics and Combinatorics 1999, World Scientific. 289-319 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kajiwara et al.: "Determinant formulas for the Toda and descrete Toda equations"Funkcial.Ekvac.. 44. 291-307 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kajiwara et al.: "A study on the fourth q-Painleve equation"J.Phys. A : Math.Gen.. 34. 8563-8581 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Yamada: "A birational representation of Weyl group, combinatorial R-matrix and discrete Toda equation"Physics and Combinatorics, 2000, World Scientific. 305-319 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Takano: "Confluence processes in defining manifolds for Painleve systems"Tohoku Math.J.. 53. 319-335 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Sasaki, M.Yoshida: "A geometric study of the hypergeometric function with imaginary exponents"Experiment.Math.. 10. 321-330 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Sasaki, M.Yoshida: "The uniformizing differential equation of the complex hyperbolic structure on the moduli space of a marked cubic surface.II"J.Phys.A. 34. 2319-2328 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.-H.Saito, H.Umemura: "Painleve equations and deformations of rational surfaces with rational double points"Physics and Combinatorics 1999, World Scientific. 320-365 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Oaku, N.Takayama: "Algorithms for D-modules-restriction, tensor product, localization, and local cohomology groups"J.Pure Appl.Algebra. 156. 267-308 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 野海 正俊: "パンルヴェ方程式-対称性からの入門"朝倉書店. 204 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Saito, B.Sturmfels, N.Takayama: "Grobner deformations of hypergeometric differential equations"Springer-Verlag, Berlin. viii+254 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Noumi, and Y. Yamada: "Symmetries in the fourth Painleve equation and Okamoto polynomials"Nagoya Math. J.. 153. 53-86 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Yamada: "Determinant formulas for the γ-functions of the Painleve equations of type A"Nagoya Math. J.. 156. 123-134 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Matano, A. Matumiya, and K. Takano: "On some Hamiltonian structures of Painleve systems. II"J. Math. Soc. Japan. 51, no. 4. 843-866 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sasaki, and M. Yoshida: "The uniformizing differential equation of the complex hyperbolic structure on the moduli space of marked cubic surfaces"Proc. Japan Acad. Ser. A Math. Sci.. 75, no. 7. 129-133 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Oaku, and N. Takayama: "An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation"J. pure Appl. Algebra. 139, no. 1-3. 201-233 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Saito, B. Sturmfels, and N. Takayama: "Hypergeometric polynomials and integer programming"Compositio Math.. 115, no. 2. 185-204 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sasaki, and M. Yoshida: "A system of differential equations in 4 variables of rank 5 invariant under the Weyl group of type E_6"Kobe J. Math.. 17, no. 1. 29-57 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Majima, K. Matsumoto, and N. Takayama: "Quadriatic relations for confluent hypergeometric functions"Tohoku Math. J. (2). 52, no. 4. 489-513 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Oaku, N. Takayama, and U. Walther: "A localization algorithm for D-modules"J. Symbolic Comput.. 29, no. 4-5. 721-728 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, and Y. Yamada: "Determinant formulas for the Toda and discrete Toda equations"Funkcial. Ekvac.. 44. 291-307 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Kajiwara, M. Noumi, and Y. Yamada: "A study on the fourth q-Painleve equation"J. Phys. A : Math. Gen.. 34. 8563-8581 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Takano: "Confluence processes in defining manifolds for Painleve systems"Tohoku Math. J. (2). 53, no. 2. 319-335 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sasaki, and M. Yoshida: "A geometric study of the hypergeometric function with imaginary exponents"Experiment. Math.. 10, no. 3. 321-330 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sasaki, and M. Yoshida: "The uniformizing differential equation of the complex hyperbolic structure on the moduli space of a marked cubic surface. II"J. Phys. A. 34, no. 11. 2319-2328 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Oaku, and N. Takayama: "Algorithms for D-modules-restriction, tensor, product, localization, and local cohomology groups"J. Pure Appl. Algebra. 156, no. 2-3. 267-308 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Noumi, and Y. Yamada: "Affine Weyl group symmetries in Painleve type equations in: Toward the exact WKB analysis of differential equations, linear or non-linear"Kyoto University Press. 245-259 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Yamada: "Special polynomials and generalized Painleve equations in: Combinatorial methods in representation theory, Adv. Stud. Pure Math. 28"Kinokuniya. 391-400 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Takano: "Defining manifolds for Painleve equations in: Toward the exact WKB analysis of differential equations, linear or non-linear"Kyoto University Press. 261-269 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Noumi, and Y. Yamada: "Birational Weyl group action arising from a nilpotent Poisson algebra in: Physics and Combinatorics 1999"World Scientific. 287-319 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Yamada: "A birational representation of Weyl group, combinatorial R-matrix and discrete Toda equation in: Physics and Combinatorics 2000"World Scientific. 305-319 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.-H. Saito, and H. Umemura: "Painleve equations and deformations of rational surfaces with rational double points in: Physics and Combinatorics 1999"World Scientific. 320-365 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Noumi: "Painleve equations - introduction through symmetry (in Japanese)"Asakura Shoten. 204 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Saito, and B. Sturmfels, and N. Takayama: "Grobner deformations of hypergeometric differential equations in: Algorithms and Computation in Mathematics 6"Springer-Verlag. 254 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi