• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Interdisciplinary research on potential analysis

Research Project

Project/Area Number 11304008
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionShimane University

Principal Investigator

SUGIE Jitsuro  Shimane Univ., Dept. of Math. Professor, 総合理工学部, 教授 (40196720)

Co-Investigator(Kenkyū-buntansha) MIZUTA Yoshihiro  Hiroshima Univ., Dept. of Math. Professor, 総合科学部, 教授 (00093815)
YAMASAKI Maretsugu  Shimane Univ., Dept. of Math. Professor, 総合理工学部, 教授 (70032935)
AIKAWA Hiroaki  Shimane Univ., Dept. of Math. Professor, 総合理工学部, 教授 (20137889)
HARA Tadayuki  Osaka Pref. Univ., Dept. of Math. Professor, 工学部, 教授 (20029565)
MURATA Minoru  Tokyo Inst. Tech., Dept. of Math. Professor, 理学部, 教授 (50087079)
Project Period (FY) 1999 – 2002
Keywordsseparatrix / limit cycle / homoclinic orbit / Lie^^'nard system / Euler equation / self-adjoint equation / elliptic equation / positive solution
Research Abstract

Van der Pol's equation was formulated to describe relaxation oscillations in electrical circuits, and played an important role in development of the theory of nonlinear oscillations and the theory of Hopf bifurcation. It is well-known that this equation has exactly one limit cycle with two unbounded separatrices. Although the separatrices are closely related to the limit cycle, little is known about the position of separatrices. In this research, we estimate the position by use of phase plane analysis and some Liapunov functions. Also, we consider the Lie^^'nard system which is a generalization of van del Pol's equation and give some conditions under which the Lie^^'nard system has homoclinic orbits.
We deal with the oscillation problem for various differential equations of Euler type and nonlinear self-adjoint differential equations, and present necessary and sufficient conditions for all nontrivial solutions to be oscillatory. The obtained theorems extend many previous results on this problem. We also discuss whether all solutions of nonlinear differential equations with time delay (or with decaying coefficients) oscillate or not. Changing variables, we can rewrite those equations into systems of Lie^^'nard type. For this reason, by means of phase plane analysis of the systems, we can examine the asymptotic behaviour of solutions in detail.
Combining the above results and the so-called "supersolution-subsolution method", we obtain sufficient conditions for quasilinear elliptic equations (or Schro^^<..>dinger equations) to have a positive solution which decays at infinity.

  • Research Products

    (125 results)

All Other

All Publications (125 results)

  • [Publications] J.Sugie, M.Katayama: "Global asymptotic stability of a predator-prey system of Holling type"Nonlinear Anal.. 38. 105-121 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie, K.Kita: "Oscillation criteria for second order nonlinear differential equations of Euler type"数理解析研究所講究録「数理モデルと関数方程式」. 1128. 77-81 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie: "A nonoscillation theorem for second order nonlinear differential equations with decaying coefficients"数理解析研究所講究録「数理モデルと関数方程式」. 1128. 91-100 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie: "Uniqueness of limit cycles in a predator-prey system of Holling-type functional response"Quart. Appl. Math.. 58. 577-590 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie, M.Iwasaki: "Oscillation of the Riemann-Weber version of Euler differential equations with delay"Georgian Math. J.. 7. 577-584 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie: "Lienard dynamics with an open limit orbit"NoDEA Nonlinear Differential Equations Appl.. 8. 83-97 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie: "A nonoscillation theorem for second-order nonlinear differential equations with decaying coefficients"Bull. London Math. Soc.. 33. 299-308 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie, K.Kita: "Oscillation criteria for second order nonlinear differential equations of Euler type"J. Math. Anal. Appl.. 253. 414-439 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie, N.Yamaoka, Y.Obata: "Nonoscillation theorems for a nonlinear self-adjoint differential equations"Nonlinear Anal.. 47. 4433-4444 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie, N.Yamaoka: "Nonosciallation theorems for second order nonlinear differential equations of Euler type"数理解析研究所講究録「関数方程式の定性的理論とその現象解析への応用」. 1216. 224-235 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie: "On the position of unbounded separatrices for van der Pol's system"Dynamics Systems Appl.. 11. 53-63 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie, K.Kita, N.Yamaoka: "Oscillation constant of second-order non-linear self-adjoint differential equations"Ann. Mat. Pura Appl.(4). 181. 309-337 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie, N.Yamaoka: "An infinite sequence of nonoscillation theorems for second-order nonlinear differential equations of Euler type"Nonlinear Anal.. 50. 373-388 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie, N.Yamaoka: "Decaying positive solutions of quasilinear elliptic equations in exterior domains in R^2"J.Math.Anal.Appl.. 275. 288-311 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie, N.Yamaoka: "Applications of phase plane analysis of a Lienard system to positive solutions of Schrodinger equations"数理解析研究所講究録「関数方程式の解のダイナミクスとその周辺」. 1254. 132-141 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie, N.Yamaoka: "Applications of phase plane analysis of a Lienard system to positive solutions of Schrodinger equations"Proc. Amer. Math. Soc.. 131. 501-509 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Sugie: "Oscillation criteria of Kneser-Hille type for second-order differential equations with nonlinear perturbed terms"Rocky Mountain J. Math.. (to appear). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Aikawa, M.Ohtsuka: "Extremal length of vector measures"Ann. Acad. Sci. Fenn. Math.. 24. 61-88 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Aikawa, T.Mizutani: "Martin boundary for a uniformly John domain"数理解析研究所講究録「ポテンシャル論とその関連分野」. 1116. 11-28 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Aikawa, S.J.Gardiner: "Evaluation of superharmonic functions using limits along lines"Bull. London. Math. Soc.. 32. 209-213 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Aikawa: "Integrability of superharmonic functions in a John domain"Proc. Amer. Math. Soc.. 128. 195-201 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Aikawa: "Boundary Harnack principle and Martin boundary for a uniform domain"J. Math. Soc. Japan. 53. 119-145 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Aikawa: "Holder continuity of the Dirichlet solution for a general domain"Bull. London Math. Soc.. 34. 691-702 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Aikawa, K.Hirata, T.Lundh: "Martin boundary for union of convex sets"数理解析研究所講究録「ポテンシャル論とその周辺」. 1293. 1-14 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 相川弘明: "複雑領域のMartin境界と境界Harnack原理"数学. 55. 1-19 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Aikawa, T.Lundh, t.Mizutani: "Martin boundary of a fractal domain"Potential Anal.. (to appear). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Aikawa: "Positive harmonic functions of finite order in a Denjoy-type domain"Proc. Amer. Math. Soc.. (to appear). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Yamasaki: "Inequalities on networks"数理解析研究所講究録「最適化のための連続と離散数理」. 1114. 184-193 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Shogenji, M.Yamasaki: "Hardy's inequality on finite networks"Mem. Fac. Sci. Eng. Shimane Univ. Ser. B. Math. Sci.. 32. 75-84 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] W.Oetti, M.Yamasaki: "Duality theorems on an infinite networks"Optimization. 48. 1-15 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Murakami, M.Yamasaki: "Inequalities on infinite networks"Mem. Fac. Sci. Eng. Shimane Univ. Ser. B. Math. Sci.. 33. 47-62 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Murakami, M.Yamasaki: "A weighted Sobolev-Poincare's inequality on infinite networks"Mem. Fac. Sci. Eng. Shimane Univ. Ser. B. Math. Sci.. 34. 45-52 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] X.Chen, Y.Shogenji, M.Yamasaki: "Verification for existence of solution of linear complementarity problems"Linear Algebra Appl.. 324. 15-26 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Mizuta: "Multiple exponential integrability for Riesz potential of functions in Orlicz classes"Advances in Math. Sci. Appl.. 9. 621-631 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Mizuta, T.Shimomura: "Boundary limits of spherical means for BLD and monotone BLD functions in the unit ball"Acad. Sci. Fenn. Ser. A. I. Math.. 24. 45-60 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Mizuta, T.Shimomura: "Growth properties of spherical means for monotone BLD functions in the unit ball"Acad. Sci. Fenn. Ser. A. I. Math.. 25. 457-465 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Mizuta, T.Shimomura: "Differentiability and Holder continuity of Riesz potential of functions in Orlicz classes"Analysis. 20. 201-223 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Futamura, K.Kishi, Y.Mizuta: "A generalization of the Liouville theorem to polyharmonic functions"J. Math. Soc. Japan. 53. 113-118 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Futamura, K.Kishi, Y.Mizuta: "A generalization of Bocher's theorem for polyharmonic functions"Hiroshima Math. J.. 31. 59-70 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Futamura, Y.Mizuta: "Existence of functions in weighted Sobolev spaces"Nagoya Math. J.. 164. 75-88 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Mizuta, T.Shimomura: "Holder continuity and differentiability for weighted Sobolev spaces"Proc. Amer. Math. Soc.. 130. 2985-2994 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Futamura, K.Kishi, Y.Mizuta: "Removability of sets for subpolyharmonic functions"Hiroshima Math J.. (to appear). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Futamura, Y.Mizuta: "Tangential limits and removable sets for weighted Sobolev spaces"Hiroshima Math J.. (to appear). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Ishige, M.Murata: "Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains"Ann.Scuola Norm. Sup. Pisa Cl. Sci.(4). 30. 171-223 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Murata: "Martin boundaries of elliptic skew products, semismall perturbations, and foundamental solutions of parabolic equations"J. Funct. Anal.. 194. 53-141 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Murata, T.Tsuchida: "Asymptotic of Green functions and Martin boundaries for elliptic operators with periodic coefficients"数理解析研究所講究録「スペクトル・散乱理論とその周辺」. 1255. 103-123 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Murata: "Heat escape"Math. Ann.. (to appear). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Matsunaga, R.Miyazaki, T.Hara: "Global attractivity results for nonlinear delay differential equations"J. Math. Anal. Appl.. 234. 77-90 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Matsunaga, T.Hara: "The asymptotic stability of a two-dimentional linear delay difference equation"Dynam. Contin. Discrete Impuls. Syst.. 6. 465-473 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Saito, T.Hara, W.Ma: "Necessary and sufficient condisions for permanence and global stability of a Lotka-Volterra system with two delays"J. Math. Anal. Appl.. 236. 534-556 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hara, R.Miyazaki, T.Morii: "Asymptotic periodic solutions for linear differential-difference equations with N delays and Hopf bifurcation"Funkcial. Ekvac.. 43. 193-212 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] W.Ma, T.Hara, Y.Takeuchi: "Stability of a 2-dimensional neural network with time delays"J.Biol. Syst.. 8. 177-193 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Ogita, H.Matsunaga, T.Hara: "Asymptotic stability condition for a class of linear delay difference equations of higher order"J. Math. Anal. Appl.. 248. 83-96 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Skata, T.Hara: "Dynamics of a linear differential system with piecewise constant argument"Dynam. Contin. Discrete Impuls. Syst.. 7. 585-594 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hara, S.Skata: "Dynamics of a delay differential system with periodically oscillation coefficients"Nonlinear Anal.. 47. 4399-4408 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] E.Beretta, T.Hara, et al.: "Global asymptotic stability of an SIR epidemic model with distributed time delay"Nonlinear Anal.. 47. 4107-4115 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Saito, W.Ma, T.Hara: "A necessary and sufficient condition for permanence of a Lotka-Volterra discrete system with delays"J. Math. Anal. Appl.. 256. 162-174 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Matsunaga, T.Hara, S.Skata: "Global attractivity for a nonlinear difference equation with variable delay"Comput. Math. Appl.. 41. 543-551 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Matsunaga, T.Hara, S.Skata: "Global attractivity for a logistic equation with piecewise constant argument"NoDEA Nonlinear Differential Equations Appl.. 8. 45-52 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hara, S.Skata: "Star-shaped periodic solutions for x'(t)=-α{1-‖x(t)‖^2}R(θ)x([t])"Nonlinear Anal.. 49. 455-470 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Saito, T.Hara, W.Ma: "Harmless delays for permanence and impersistence of a Lotka-Volterra discrete predator-prey system"Nonlinear Anal.. 50. 703-715 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] W.Ma, Y.Takeuchi, T.Hara et al.: "Permanence of an SIR epidemic model with distributed time delays"Tohoku Math. J.. 54. 581-591 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 相川弘明(編集): "数理解析研究所講究録「ポテンシャル論とその周辺」1293"京都大学数理解析研究所. 198 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J,Sugie., M,Katayama.: "Global asymptotic stability of a predator-prey system of Holling type"Nonlinear Anal. 38. 105-121 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J,Sugie., K,Kita.: "Oscillation criteria for second order nonlinear differential equations of Euler type"RIMS Kokyukoku. 1128. 77-81 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] j,Sugie.: "A nonoscillation theorem for second order nonlinear differential equations with decaying coefficients"RIMS Kokyukoku. 1128. 91-100 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] j,Sugie.: "Uniqueness of limit cycles in a predator-prey system with Holling-type functional response"Quart. Appl. Math.. 58, 3. 577-590 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] j,Sugie., M,Iwasaki.: "Oscillation of the Riemann-Weber version of Euler differential equations with delay"Georgian Math. J.. 7. 577-584 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] j,Sugie.: "Lie^^'nard dynamics with an open limit orbit"NoDEA Nonlinear Differential Equations Appl.. 8. 83-97 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] j,Sugie.: "A nonoscillation theorem for second-order nonlinear differential equations with decaying coefficients"Bull. London Math. Soc.. 33. 299-308 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] j,Sugie., K,Kita.: "Oscillation criteria for second order nonlinear differential equations of Euler type"J. Math. Anal. Appl.. 253. 414-439 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] j,Sugie., N,Yamaoka., Y,Obata.: "Nonoscillation theorem for a nonlinear self-adjoint differential equation"Nonlinear Anal.. 47. 4433-4444 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] j,Sugie., N,Yamaoka.: "Nonoscillation theorems for second order nonlinear differential equations of Euler type"RIMS Kokyukoku. 1216. 224-235 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] j,Sugie.: "On the position of unbounded separatrices for van der Pol's system"Dynam. Systems Appl.. 11. 53-63 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Sugie., K,Kita., N,Yamaoka.: "Oscillation constant of second-order non-linear selfadjoint differential equations"Ann. Mat. Pura Appl.(4). 181. 309-337 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Sugie., N,Yamaoka.: "An infinite sequence of nonoscillation theorems for second-order nonlinear differential equations of Euler type"Nonlinear Anal.. 50. 373-388 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Sugie., N,Yamaoka.: "Decaying positive solutions of quasilinear elliptic equations in exterior domains in R^2"J. Math. Anal.. 275. 288-311 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Sugie., N,Yamaoka.: "Applications of phase plane analysis of a Lie^^'nard system to positive solutions of Schro^^..dinger equations"RIMS Kokyukoku. 1254. 132-141 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Sugie., N,Yamaoka.: "Applications of phase plane analysis of a Lie^^'nard system to positive solutions of Schr^^<..>dinger equations"Proc. Amer. Math. Soc.. 131. 501-509 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Sugie.: "Oscillation criteria of Kneser-Hille type for second-order differential equations with nonlinear perturbed terms"Rocky Mountain J. Math., (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Aikawa., M,Ohtsuka.: "Extremal length of vector measures"Ann. Acad. Sci. Fenn. Math.. 24. 61-88 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Aikawa., T,Mizutani.: "Martin boundary for a uniformly John domain"RIMS Kokyukoku. 1116. 11-28 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Aikawa., S.J.Gardiner.: "Evaluation of superharmonic functions using limits along lines"Bull. London Math. Soc.. 32. 209-213 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Aikawa.: "Integrability of superharmonic functions in a John domain"Proc. Amer. Math. Soc.. 128. 195-201 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Aikawa.: "Boundary Harnack principle and Martin boundary for a uniform domain"J. Math. Soc. Japan. 53. 119-145 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Aikawa.: "Ho^^<..>lder continuity of the Dirichlet solution for a general domain"Bull. London Math. Soc.. 34. 691-702 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Aikawa., K,Hirata., T,Lundh.: "Martin boundary for union of convex sets"RIMS Kokyukoku. 1293. 1-14 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Aikawa.: "Martin boundary and boundary Harnack principle for nonsmooth domains"Sugaku. 55. 1-19 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Aikawa., T,Lundh., T,Mizutani: "Martin boundary of a fractal domain"Potential Anal. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Aikawa.: "Positive harmonic functions of finite order in Denjoy-type domain"Proc. Amer. Math. Soc., (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M,Yamasaki.: "Inequalities on networks"RIMS Kokyukoku. 1114. 184-193 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y,Shoenji., M,Yamasaki.: "Hardy's inequality on finite networks"Mem. Fac. Sci. Eng. Shimane Univ. Ser. B. Math. Sci.. 32. 75-84 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] W,Oettlli., M,Yamasaki.: "Duality theorems on an infinite networks"Optimization. 48. 1-15 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A,Murakami., M,Yamasaki.: "Inequalities on infinite networks"Mem. Fac. Sci. Eng. Shimane Univ. Ser. B. Math. Sci.. 33. 47-62 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A,Murakami., M,Yamasaki.: "A weighted Sobolev-Poincare^^''s inequality on infinite networks"Mem. Fac. Sci. Eng. Shimane Univ. Ser. B. Math. Sci.. 34. 45-52 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] X,Chen., Y,Shogenji., M,Yamasaki.: "Verification for existence of solutions of linear complementarity problems"Linear Algebra Appl.. 324. 15-26 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y,Mizuta.: "Multiple exponential integrability for Riesz potential of function in Orlicz Classes"Advances in Math. Sci. Appl.. 9. 621-631 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y,Mizuta., T,Shimomura.: "Boundary limits of spherical means for BLD and monotone BLD functions in the unit ball"Acad. Sci. Fenn. Ser. A. I. Math.. 24. 45-60 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y,Mizuta., T,Shimomura.: "Growth properties of spherical means for monotone BLD functions in the unit ball"Acad. Sci. Fenn. Ser. A. I. Math.. 25. 457-465 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y,Mizuta., T,Shimomura.: "Differentiability and Ho^^<..>lder continuity of Riesz potentials of functions in Orlicz classes"Analysis. 20. 201-223 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T,Futamura., K,Kishi., Y,Mizuta.: "A generalization of the Liouville theorem to polyharmonic functions"J. Math. Soc. Japan. 53. 113-118 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T,Futamura., K,Kishi., Y,Mizuta.: "A generalization of the Bo^^^cher's theorem for polyharmonic functions"Hiroshima Math. J.. 31. 59-70 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T,Futamura., Y,Mizuta.: "Existence of functions in weighted Sobolev spaces"Nagoya Math. J.. 164. 75-88 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y,Mizuta., T,Shimomura.: "Ho^^<..>lder continuity and differentiability for weighted Sobolev spaces"Proc. Amer. Math. Soc.. 130. 2985-2994 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T,Futamura., K,Kishi., Y,Mizuta.: "Remonvability of sets for subpolyharmonic functions"Hiroshima Math. J., (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T,Futamura., Y,Mizuta.: "Tangential limits and removable sets for weighted Sobolev spaces"Hiroshima Math. J., (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K,Ishige., M,Murata.: "Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains"Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). 30. 171-223 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M,Murata.: "Martin boundaries of elliptic skew products, semismall perturbations, and foundamental solutions of parabolic equations"J. Funct. Anal.. 194. 53-141 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M,Murata., T,Tsuchida.: "Asymptotic of Green functions and Martin boundaries of elliptic operators with periodic coefficients"RIMS Kokyukoku. 1255. 103-123 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M,Murata.: "Heat escape"Math. Ann., (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Matsunaga., R,Miyazaki., T,Hara.: "Global attractivity results for nonlinear delay differential equations"J. Math. Anal. Appl.. 234. 77-90 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Matsunaga., T,Hara.: "The asymptotic stability of a two-dimensional linear delay difference equation"Dynam. Cotin. Discrete Impuls. Syst.. 6. 465-473 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y,Saito., T,Hara., W,Ma.: "Necessary and sufficient conditions for permanence and global stability of a Lotka-Volterra system with two delays"J. Math. Anal. Appl.. 236. 534-556 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T,Hara., R,Miyazaki., T,Morii.: "Asymptotic periodic solutions for linear differential-difference equations with N delays and Hopf bifurcation"Funkcial. Ekvac.. 43. 193-212 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] W,Ma., T,Hara., Y,Takeuchi.: "Stability of a 2-dimensional neural network with time delays"J. Biol. Syst.. 8. 177-193 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R,Ogita., H,Matsunaga., T,Hara.: "Asymptotic stability condition for a class of linear delay difference equations of higher order"J. Math. Anal.. 248. 83-96 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S,Sakata., T,Hara.: "Dynamics of a linear differential system with piecewise constant argument"Dynam. Contin. Discrete Impuls. Syst.. 7. 585-594 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T,Hara., S,Sakata.: "Dynamics of a delay differential system with perodically oscillatory coefficients"Nonlinear Anal.. 47. 4399-4408 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] E,Beretta., T,Hara., W,Ma., Y,Takeuchi.: "Global asymptotic stability of an SIR epidemic model with distributed time delay"Nonlinear Anal.. 47. 4107-4115 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y,Saito., W,Ma., T,Hara.: "A necessary and sufficient condition for permanence of a Lotka-Volterra discrete system with delays"J. Math. Anal. Appl.. 256. 162-174 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Matsunaga., T,Hara., S,Sakata.: "Global attractivity for a nonlinear difference equation with variable delay"Comput. Math. Appl.. 41. 543-551 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H,Matsunaga., T,Hara., S,Sakata.: "Global attractivity for a logistic equation with piecewise constant argument"NoDEA Nonlinear Differential Equations Appl.. 8. 45-52 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T,Hara., S,Sakata.: "Star-shaped periodic solutions for x'(t)=-α{1-||x(t)||^2}R(θ)x([t])"Nonlinear Anal.. 49. 455-470 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y,Saito., T,Hara., W,Ma.: "Harmless delays for permanence and impersistence of a Lotka-Volterra discrete predator-prey system"Nonlinear Anal.. 50. 703-715 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] W,Ma., Y,Takeuchi., T,Hara., E,Beretta.: "Permanence of an SIR epidemic model with distributed time delays"To^^^hoku Math. J.. 54. 581-591 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi