• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Iwasawa theory of Harse zeta functions

Research Project

Project/Area Number 11440003
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKYOTO UNIVERSITY (2001)
The University of Tokyo (1999-2000)

Principal Investigator

KATO Kazuya  Graduate School of Science, Professor, 大学院・理学研究科, 教授 (90111450)

Co-Investigator(Kenkyū-buntansha) KATURA Toshiyuki  Dept Math. Sci. Univ. of Tokyo Professor, 大学院・数理科学研究科, 教授 (40108444)
SAITO Takeshi  Dept Math. Sci. Univ. of Tokyo Professor, 大学院・数理科学研究科, 教授 (70201506)
YOSHIDA Hiroyuki  Graduate School of Science Professor, 大学院・理学研究科, 教授 (40108973)
ODA Takayuki  Dept Math. Sci. Univ. of Tokyo Professor, 大学院・数理科学研究科, 教授 (10109415)
UENO Kenji  Graduate School of Science Professor, 大学院・理学研究科, 教授 (40011655)
Project Period (FY) 1999 – 2001
KeywordsHarse zeta function / moduler forms / Iwasawa theory / abelian variety / BSD conjecture / conductor / log geometry
Research Abstract

Concerning Iwasawa theory of moduar forms, I completed the preprint "p-adic Hoclge theory and values of zeta funcions of moduar forms" (244 pages). In this paper, I proved the half of Iwasawa main conjecture for modular forms. (Half means one 【less than or equal】 in the conjecture which has the form of the equality "zeta side"="arithmetic group side.)
As an application I obtained results on BSD confectures on elliptic curves over rational number field.
Concerning BSD 'cong' for abelian varieties over global fields of poeetre characteristic, I proved it assuming the fimteness of Take-Shaturevich group (with F. Trihen).
I proved Blocn's conductor formula by the joint work with Takeshi Saito, This is related also to Harse zeta functions.
I obtained results on log Hodge theory and on log abelian varieties by using the method of log geometry.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Kazuya Kato: "Existence theorem for higher local fields"Geom Topol. Monogr. 3. 165-195 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kazuya Kato: "Bloch's conductor formula"Proc. Jangjeon Math. Soc. 1. 1. 91-95 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kazuya Kato: "How Fermat's last theorem was proved"Historia Sci.. 9. 123-145 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kazuya Kato: "Enler systems, Iwasawa theory, and Selmer groups"Kodai Math. J. 22. 313-372 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kazuya Kato, Sampei Usui: "Logarithmic Hodge Structures and Classifying Spaces"CRM Proc. lecture Notes. 24. 115-130 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kazuya Kato, Sampei Usui: "Borel-Serre spaces and spaces of SL(2)-orbits"Advanced Studies in Pure. Math.. (公表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kazuya Kato: "Existence thesrem for higher local fields"Geom Topol. Monogr. 3. 165-195 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuya Kato: "Bloch's conductor formula"Proc. Jamgjeon Math. Soc. 1. 91-95 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuya Kato: "How Fermat's last thesrem was proved"Historia Sci.. 9. 123-145 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuya Kato: "Euler systems, Iwasawa theory and Selmer groups"Kodai Math J.. 22. 313-372 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuya Kato, Sampei Usui: "Lugerithmic Hodge structures and classifying opaces"CRM proc. Lecture Notes. 24. 115-130 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuya Kato, Sampei Usui: "Borel-Serre spaces and spaces of SL(2)-orbits"Advanced Studies in Pure Math. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi