• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Algebraic Cycles on Algebraic Varieties

Research Project

Project/Area Number 11440004
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNagoya University (2000-2001)
Tokyo Institute of Technology (1999)

Principal Investigator

SAITO Shuji  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (50153804)

Co-Investigator(Kenkyū-buntansha) KOBAYASHI Ryoichi  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (20162034)
MATSUMOTO Koji  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (60192754)
FUJIWARA Kazuhiro  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (00229064)
KONDO Shigeyuki  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (50186847)
Project Period (FY) 1999 – 2001
Keywordsalgebraic cycles / higer class field theory / p-adic Hodge theory / Hodge theory / higher Abel-Jaoci map / mixed motives / Beilinson conjectures / higher Chow groups / logarithmic Torelli problem
Research Abstract

There are two streams in this research project. One is that of higher class field theory and another is that of study of algebraic cycles.
The purpose of higher class field theory is to generalize the classical class field theory established by Artin-Takagi and its applications. A goal is to control abelian covering of a scheme of arithmetic nature by using algebraic K-theory and it may be called geometric class field theory. Higher class field theory for a scheme of finite type over the ring of rational integers has been established in the joint work with K. Kato. After that the theory has been developing by incorporating such new techniques as p-adic Hodge theory into itself. One of the main results of this research project generalizes the well-known theorem in number theory due to Albert-Brauer-Hasse-Noether.
A main purpose of study of algebraic cycles is to control algebraic cycles by means of period integral. The problem originates from Abel's theorem, a monumental result in the 19t … More h century mathematics. The. aim is to establish a higher dimensional version of Abel's theorem, that is to analyze the structure of Chow groups of algebraic varieties by means of Hodge theory. The first step toward this problem has been taken by Griffiths, who defined Abel-Jacobi maps relating Chow group to complex torus called intermediate Jacobian variety. Then Mumford shown that Chow group is in general too large to be controlled by a complex torus and hence Abel-Jacobi map can have a very large kernel. By this result it is recognized that the problem of generalization of Abel's theorem is very deep. The main contributions of this research project to the problem is to construct the theory of higher Abel-Jacobi maps generalizing Griffiths' Abel-Jacobi maps to capture algebraic cycles that Griffiths' Abel-Jacobi maps could not captured. The theory has been developing and brought about various applications to Bloch's Chow groups, Beilinson conjectures, logarithmic Torelli problems and so on. Less

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] S.Saito: "Motives and Filtrotions on Chow groups, II"NATO Science Series. 548. 321-346 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Saito: "Motives, Algebraic cycles and Hodge theory"CRM Proceedings and Lecture Note. 24. 235-253 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Saito: "Higher normal functions and Griffiths groups"J. of Algebraic Geometry. 11. 161-201 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Saito: "Infinitesimal logarithmic Torelli problem"Advanced Studies in Pure Math. 36. 401-434 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] U.Jannsenn, S.Saito: "Kato homology of arithmetic schemes and higher class field theory over local fields"Documenta Math.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Asakura, S.Saito: "Generalized Jacobianrings for open complete intersections"Preprint, 2002.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Asakura, S.Saito: "Nother-Lefschetz problemn for Beilinson-Hodge cycles on open complete intersections"Preprint, 2002.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Muller-Stach, S.Saito: "On K_1 and K_2 of algebraic surfaces"Preprint, 2002.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Saito: "Motives and Filtrations on Chow groups, II"NATO Science Series. 548. 321-346 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Saito: "Motives, Algebraic Cycles and Hodge theory"CRM Proceedings and Lecture Notes. 24. 235-253 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Saito: "Higher normal functions and Griffiths groups"J. of Algebraic Geometry. 11. 161-201 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Saito: "Infinitesimal logarithmic Torelli problem for degenerating hypersurfaces in P^n"Advanced Studies in Pure Math.. 36. 401-434 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] U. Jannsen and S. Saito: "Kato homology of arith-metic schemes and higher class field theory over local fields"Documenta Math. (the special volume for the 50th birthday of Prof. Kazuya Kato). (to appear). (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Asakura and S. Saito: "Generalized Jacobian rings for open complete intersections"(preprint). (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Asakura and S. Saito: "Nother-Lefschetz problemn for Beilinson-Hodge cycles on open complete intersections"(preprint). (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Muller-Stach and S. Saito: "On K_1 and K_2 of algebraic surfaces"(preprint). (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi