• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Rational singularities, Young diagram, Painleve equation

Research Project

Project/Area Number 11440006
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

UMEMURA Hiroshi  Nagoya University, Graduate school of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (40022678)

Co-Investigator(Kenkyū-buntansha) NOUMI Masatoshi  Department of Mathematics, Kobe University, Professor, 理学部, 教授 (80164672)
OKAMOTO Kazuo  Graduate school of Mathematical science, University of Tokyo Professor, 大学院・数理科学研究科, 教授 (40011720)
MUKAI Shigeru  Research Institute of Mathematical Science, Kyoto University, Professor, 数理解析研究所, 教授 (80115641)
OKADA Soichi  Nagoya University, Graduate school of Mathematics, Associated Professor, 大学院・多元数理科学研究科, 助教授 (20224016)
Project Period (FY) 1999 – 2002
KeywordsPainleve equation / Young diagram / Special polynomial / Rational singular puint / Algebrait surface
Research Abstract

1. Painleve equations and Special polynomial
We disocvered that the Painleve equations generate special polynomials. If we consider the motivation of the discovery of the Painleve equtions, it is surprising that they have combinatorial aspects. We presented conjectures on the special polynomials and proved them.
2. Generalization of the Painleve equations based on the symmetries
Noumi considered that the conjectures should be solved in a natural frame work. To this end, he generalized the Painleve equations from the view point of theory of Lie algebra.
3. Deformation of rational double points and Backhand tranhformations
We proved that the Backhund transformations arise from deformation of rational double points.
4. Infinite dimensional differential Galois theory and Painleve equations
We applied our theory of infinite dimensional to the definition of the Painleve equations.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] 梅村浩, 岡本和夫: "Special polynomials and Hirota bilinear relations of the second and the forth Painleve equation"Nagoya Math. J.. 159. 179-200 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 梅村浩 他: "Painleve equations and deformation of rational surfaces with retional double points"Physics and combinatorics 1999. 320-365 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 岡本和夫 他: "The proof of the Painleve property by Masuo Hukuhara"Funkcial Ekvac. 44. 201-217 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 向井茂: "Geometric realization of T-shaped root systems and counter examples to Hilbert 14th problem"Kyoto Univ, RIMS, Preprint. (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 野海正俊 他: "Symmetries in the fourth Painleve equation and Okamoto polynomiouls"Nagoya Math. J.. 153. 53-86 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 野海正俊 他: "A new Lax pair for the sixth Painleve equation associated with so(8)"Microlocal Analysis and complex Fourier Analysis. 238-252 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 梅村 浩: "楕円関数論"東大出版会. 362 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroshi Umemura, Kazuo Okamoto, et al: "Special polynomials and Hirota bilinear relations of the second and the fourth Puinleve equations"Nagoya Math.J.. 159. 179-200 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroshi Umemura et al.: "Painleve equations and defovmation of rational smfaces milh rational double points"Physics and Combinatorics 1999 World Scientifiu. 320-365 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuo Okamoto et al.: "The puof of the Painleve propeit. Masuo Hukuhara"Funkcial.Ekuac. 44. 201-217 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shigeru Mukai: "Geometue realizati on of T-shaped root systems and counter examples to Hilbert 14th probleme"Kyoto University, RIMS Preprint.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masatoshi Noumi et al.: "Symmetries in the fourth Painleve equations and Okamoto polynomials"Nagoya Math.J.. 153. 53-86 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masatoshi Noumi et al.: "Anew Lax pair for thr sixth Painleve equation associated with solgl"Microlocal Analysis and Fourun Analysis, World Sci.. 238-252 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Umemura: "Thcory of elliptie functions, Unirity of Tokyo Press"362 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi