• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Theory of branching laws of unitary representations of reductive Lie groups and geometric realization of representations

Research Project

Project/Area Number 11440018
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKYOTO UNIVERSITY (2001)
The University of Tokyo (1999-2000)

Principal Investigator

KOBAYASHI Toshiyuki  Research Institute for Mathematical Sciences, Kyoto University Associate Professor, 数理解析研究所, 助教授 (80201490)

Project Period (FY) 1999 – 2001
Keywordssemisimple Lie group / unitary representation / conformal geometry / branching law / discontinuous group / minimal representation / highest weight module / discrete spectrum
Research Abstract

The branching law means the irreducible decomposition of an irreducible unitary representation of a group when restricted to a subgroup (e.g. decomposition of tensor products, breaking symmetry in physics,…). It is one of principal subjects in representation theory to find branching laws. Nevertheless, very little has been studied on branching laws of unitary representations, except for some special cases until mid-90s, partly because of analytic difficulties arising from infinite dimensions.
1. Our main results during this period are to establish a basic theory of "discrete branching laws of infinite dimensional representations of semisimple Lie groups. Namely, based on new examples that we had found some years ago, we proposed a formulation of discrete branching laws, and proved a criterion for branching laws to be discretely decomposable by using both micro-local analysis and algebraic representation theory. Furthermore, we found new applications of these representation theoretic res … More ults to the following problems :
i) Non-commutative harmonic analysis. To construct new discrete series representations for homogeneous spaces.
ii) Automorphic forms. To prove a vanishing theorem of modular varieties for locally Riemannian symmetric spaces.
Moreover, we found explicitly branching laws in certain settings in connection with conformal geometry.
On these topics, I gave one-hour lectures in various international conferences, and a plenary lecture at MSJ for the Spring Prize (1999). Also, I gave series of lectures at European School (2000), at Harvard University (2001), and the Winter School at Czech Republic (2002)
2. Since the late 1980s, I have initiated the study of the existence problem of compact CliffordKlein forms of pseudo-Riemannian homogeneous manifolds. Recently, this problem has been studied by different methods such as discrete groups, ergodic theory, symplectic geometry and unitary representation theory, revealing the interactions with other branches of mathematics.
I wrote an expository survey on this area and posed some open problems in "Mathematics Unlimited, 2001 and beyond" as a project of the World Mathematical Year 2000. Less

  • Research Products

    (32 results)

All Other

All Publications (32 results)

  • [Publications] 小林俊行: "半単純リー群のユニタリ表現の離散的分岐則の理論とその展開"数学(日本数学会), 岩波書店. 51-4. 337-356 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi: "Discretely decomposable restrictions of unitary representations of reductive Lie groups-examples and conjectures"Advanced Study in Pure Mathematics. 26. 99-127 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi: "Adjoint action of a Lie Group"Encyclopaedia Mathematics. Supplement II. 15-16 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林俊行: "半単純リー群のユニタリ表現の離散分岐理論とその展開"総合講演・企画特別講演アブストラクト(日本数学会). 1-19 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林俊行: "等質空間における不連続群"表現論シンポジウム講演集. 99-110 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi: "Branching laws of unitary highest weight modules with respect to semisimple symmetric pairs"Tangungsbericht, Representation Theory and Complex Analysis. 18. 15-16 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi: "Discontinuous groups for non-Riemannian homogeneous spaces"Mathematics Unlimited-2001 and Beyond, (eds. B. Engquist and W. Schmid), Springer-Verlag. 723-748 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林俊行: "名著発掘ポントリャーギン『連続群論』"数学の楽しみ. 23. 110-119 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi, B.Orsted: "Analysis of the Minimal Representation of O(p, q)-I. Realization via Conformal Geometry"RIMS preprint. 1337. 22 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi, B.Orsted: "Analysis of the Minimal Representation of O(p, q)-II. Branching Laws"RIMS preprint. 1338. 26 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi, B.Orsted: "Analysis of the Minimal Representation of O(p, q)-III. Ultrahyperbolic equations on R^<p-1,q-1>"RIMS preprint. 1339. 36 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi: "Introduction to actions of discrete groups on pseudo-Riemannian homogeneous manifolds"Acta Applicandae Mathematicae. Special volume(to appear). (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林俊行: "山辺作用素の解空間における不変な内積について"日本工業大学微分幾何学研究集会『種々の幾何構造の発展』講演要旨. 4-5 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林俊行: "非リーマン等質空間の不連続群論"数学の最前線,21世紀への挑戦. 第1巻(to appear). (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi: "Theory of discrete decomposable branching laws of unitary representations of semisimple Lie groups and some applications"Sugaku Exposition, Amer. Math. Soc.. (to appear). (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi: "Conformal geometry and global solutions to the Yamabe operators on some classical pseudo-Riemannian manifolds"Rendiconti del Circolo Matematico di Palermo. (to appear). (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林俊行-大島利雄: "Lie群とLie環 1 (岩波講座 現代数学の基礎)"岩波書店. 293+16 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小林俊行: "Lie群とLie環 2 (岩波講座 現代数学の基礎)"岩波書店. 315+14 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi, M.Kashiwara, T.Matsuki, K.Nishiyama, eds.: "Analysis on Homogeneous Spaces and Representation theory of Lie Groups, Okayama-Kyoto"紀伊国屋書店・アメリカ数学会. 359 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi: "Discretely decomposable restrictions of unitary representations of reductive Lie groups - examples and conjectures"Advanced Study in Pure Mathematics. 26. 99-127 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi: "Adjoint action of a Lie Group"Encyclopaedia Mathematics, Supplement. II. 15-16 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi: "Branching laws of unitary highest weight modules with respect to semisimple symmetric pairs"Tangungsbericht, Representation Theory and Complex Analysis. 18. 15-16 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi: "Discontinuous groups for non-Riemannian homogenious spaces"Mathematics Unlimited 2001 and Beyond,(eds. B. Engquist and W. Schmid). Springer-Verlag. 723-748 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi, B. Orsted: "Analysis of the Minimal Representation of O(p,q) - I. Realization via Conforrnal Geometry"RIMS preprint. 1337. 22 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi, B. Orsted: "Analysis of the Minimal Representation of O(p,q) - II. Branching Laws"RIMS preprint. 1338. 26 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi, B. Orsted: "Analysis of the Minimal Representation of O(p,q) - III, Ultrahyperbolic Equations on R^<p-1,q-1>"RIMS preprint. 1339. 36 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi: "Introduction to actions of discrete groups on pseudo-Riemannian homogeneous manifolds"Acta Applicandae Mathematicae. Special volume(to appear). (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi: "Theory of discrete decomposable branching laws of unitary representations of semisimple Lie groups and some applications"Sugaku Exposition, Amer. Math. Soc. (to appear). (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi: "Conformal geometry and global solutions to the Yamabe operators on some classical pseudo-Riemannian manifolds"Rendiconti del Circolo Matematico di Palermo. (to appear). (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi, T.Oshima: "Lie groups and Lie algebras I"Iwanami. 293+16 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi: "Lie groups and Lie algebras II"Iwanami. 315+14 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi, M. Kashiwara, T. Matsuki, K. Nishiyama, eds: "Analysis on Homogeneous Spaces and Representation theory of Lie Groups, Okayama - Kyoto"Kinokuniya Amer. Math. Soc.. 359 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi