• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Study of special functions based on representation and invariant theories

Research Project

Project/Area Number 11440043
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

UMEDA Toru  Math. Dept., Kyoto University, Associte Professor, 大学院・理学研究科, 助教授 (00176728)

Co-Investigator(Kenkyū-buntansha) NOUMI Masatoshi  Math. Dept., Kobe Univ., Prof., 大学院・自然科学研究科, 教授 (80164672)
MATSUZAWA Junichi  Dept. of technology, Kyoto University, Lecturer, 大学院・工学研究科, 講師 (00212217)
NOMURA Takaaki  Math. Dept., Kyoto University, Assoc. Prof., 大学院・理学研究科, 助教授 (30135511)
OEHIAI Hiroyuki  Math. Dept. Tokyo Inst. Technology, Assoc. Prof., 大学院・理学研究科, 助教授 (90214163)
WAKAYAMA Masato  Graduate School of Math. Kyushu Univ., Prof., 大学院・数理学研究院, 教授 (40201149)
Project Period (FY) 1999 – 2001
Keywordsspecial functions / representation theory / invariant theory / invariant differential operations / Copelli identity / hypergeometric functions / determinant / Pfaphan
Research Abstract

The main object of the research is to find the group theoretical background behind the world of special functions and to utilize the symonetious for the special functions. Among them the theory of "dual pairs" is the key to our study, which explains many phenomina from the view-point of representation theory and the theory of invariants. We have Capilli type identities, now commtative harnomic oscillatws as the typical investizations where and pains work very well as the griding principle. On the other hand, for the hyprogeinctic from Rons and Pain lene transcendents, we have claified the grop gymmetric behind them. The helps a lot for deeper investigations of these fnctions.
As for the Capelli type identities, we got many interesting formlas including permanets and Pfuffians, not only for the determinants, Furthermore we found some Capelli type identity corresponding to the "group determinant". The invariant theoretic backgroud conneits these identities to some sphenicel functions. There are sort of unification of various objects.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] T.Umeda: "On Turnbull identity for skew symmetric matrices"proc. Edinburgh Math. Soc.. 43. 379-393 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Itoh, T.Umeda: "On central elements in the universal enveloping algebra of the orthogonal Lie algebra"Compositio Math.. 127. 333-359 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nomura: "On Penney's Cayley transform of a hemogeneous Siegel domain"J. Lie Theory. 11. 185-206 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kajihara, M.Noumi: "Raising operators of row type for Macdonald polynomials"Compositio Math.. 120. 119-136 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Kurokawa, M.Wakayama: "On ζ(3)"j. Ramanujan Math. Soc. 16. 205-214 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Ochiai: "Non-commutative harmonic oscillators and Fuchian indinary differential equations"Comm. Math. Phys.. 217. 357-373 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 梅田享, 黒川信重, 若山正人, 中島さち子: "ゼータの世界"日本評論社. 156 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Umeda: "On Turnbull identitfies for skew symmetric Matrics"Pior, Edinburgh Math. Soc. 43. 379-393 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Itoh, T.Umeda: "On central elements in the universal enveloping alegibra of the orthogonal Lie algebra"Conposition Math. 127. 333-359 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Nomura: "On Penny's Cayley transform of a homogeneous Segel domain"J. Lie Theory. 11. 185-206 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Kajihara, M.Noumi: "Raising operetors of row-type for Macdonald polynomials"Corposiho Math. 120. 119-136 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Karakawa, M.Wakayama: "On ζ(3)"J.Ramanujan Math.Soc. 16. 205-214 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Ochiai: "Non-commutative harmonic osciltatris and Fuchiam ordinary differendial equatons"Comm.Math.Phys. 217. 357-373 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Umeda, N.Kurokawa, M.Wakayama, Sachiko Nakajima: "the world of zeta"Nihon-Hyoronsha(in Japanese). 156 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi