• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

A Study of asymptotic behaviors of stochastic oscillatory integrals

Research Project

Project/Area Number 11440051
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKYUSHU UNIVERSITY

Principal Investigator

TANIGUCHI Setsuo  Faculty of Mathematics, Kyushu University, Prof., 大学院・数理学研究院, 教授 (70155208)

Co-Investigator(Kenkyū-buntansha) YASUDA Kumi  Faculty of Mathematics, Kyushu University, Res. Ass., 大学院・数理学研究院, 助手 (40284484)
HAMANA Yuji  Faculty of Mathematics, Kyushu University, Ass. Prof., 大学院・数理学研究院, 助教授 (00243923)
SUGITA Hiroshi  Faculty of Mathematics, Kyushu University, Ass. Prof., 大学院・数理学研究院, 助教授 (50192125)
MATSUMOTO Hiroyuki  Nagoya Univ., Faculty of Information and culture, Ass. Prof., 情報分科学部, 助教授 (00190538)
FUKAI Yasunari  Faculty of Mathematics, Kyushu University, Res. Ass., 大学院・数理学研究院, 助手 (00311837)
Project Period (FY) 1999 – 2001
KeywordsStochastic oscillatory integral / Malliavin calculus / quadratic phase function / localization / asymptotic theory / heat kernel / trace formula / large deviation
Research Abstract

In this research, we have made a systematic study on the asymptotic behavior of stochastic oscillatoty integrals. A stochastic oscillatory integral I(a) is, by definition, a integral of exp[iaq(x)]f(x) over the Wiener space X with respect to the Wiener measure on it, where i is the square root of -1, a is a real number, q, f are Wiener functionals on X. Obviously I(a) gives a characteristic function of the distribution of q under f(x)m(dx), and hence it is a basic object in the probability theory. Recalling the theory of Feynman path integrals, one recognizes the real interest of stochastic oscillatory integrals. Namely, a stochastic oscillatory integral is a mathematical counterpart to Feynman path integral, and the study of its asymptotic behavior closely relates to, so called, the WKB approximation, the semi-classical approximation, and so on. In our study, following the well developed theory of statinary phase method on finite dimensional spaces, we made several basic but indispensable researches on the asymptotic behavior of stochastic oscillatory integrals. We established several explicit representation of stochastic oscillatory integrals with quadratic phase functions, and apply them to show a principle of stationary phase for such oscillatory integrals. Moreover, we spelled out the relationship between the decay order of integrals and the quadratic phase functions. We also showed that a localization to stationary points of the main part of the asymptototic behavior occurs for some stochastic oscillatory integrals. We moreover made several concrete observations when the oscillatory integral is defined on the classical Wiener space, the path space.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] H.Sugita, S.Taniguchi: "A remark on stochastic oscillatory integrals with respect to a pinned Wiener measure"Kyushu J. Math.. 53. 151-162 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Taniguchi: "Stochastic oscillatory integrals with quadratic phase function and Jacobi equations"Probab. Theory Related Fields. 114. 291-308 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Taniguchi: "Levy' s stochastic area and the principle of stationary phase"J. Funct. Anal.. 172. 165-176 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Matsumoto: "Closed form formulae for the heat kernels and the Green functions for the Laplacians on the symmetric spaces of rank one"Bull. Sci. math.. 125. 553-581 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Yasuda: "Extension of measures to infinite dimensional spaces over p-adic field"Osaka J. Math.. 37. 967-985 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kesten, Y.Hamana: "A large-deviation result for the range of random walk and for the Wiener sausage"Probability Theory and Related Fields. 120. 183-208 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. Sugita and S. Taniguchi: "A remark on stochastic oscillatory integrals with respect to a pinned Wiener measure"Kyushu J. Math.. 53. 151-162 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Taniguchi: "Stochastic oscillatory integrals with quadratic phase function and Jacobi equations"Probab. Theory Related Fields. 114. 291-308 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Taniguchi: "Levy's stochastic area and the principle of stationary phase"J. Funct. Anal.. 172. 165-176 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Matsumoto: "Closed form formulae for the heat kernels and the Green functions for the Laplacians on the symmetric spaces of rank one"Bull. Sci. math.. 125. 553-581 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Yasuda: "Extension of measures to infinite dimensional spaces over p-adic field"Osaka J. Math.. 37. 967-985 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Kesten and Y. Hamana: "A large-deviation result for the range of random walk and for the Wiener sausage"Probab. Theory Related Fields. 120. 183-208 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi