• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Analysis of dynamical systems and related topics in geometry

Research Project

Project/Area Number 11440054
Research Category

Grant-in-Aid for Scientific Research (B).

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionTokyo Institute of Technology

Principal Investigator

ITO Hidekazu  Tokyo Institute of Technology, Associate Prof., 大学院・理工学研究科, 助教授 (90159905)

Co-Investigator(Kenkyū-buntansha) TANAKA Kazunaga  Waseda University, Prof., 理工学部, 教授 (20188288)
KOKUBU Hiroshi  Kyoto University, Associate Prof., 大学院・理学研究科, 助教授 (50202057)
MORITA Takehiko  Tokyo Institute of Technology, Associate Prof., 大学院・理工学研究科, 助教授 (00192782)
NAKAI Isao  Ochanomizu University, Prof., 理学部, 教授 (90207704)
ONO Kaoru  Hokkaido Univsersity, Prof., 大学院・理学研究科, 教授 (20204232)
Project Period (FY) 1999 – 2000
KeywordsHamiltonian system / integrable system / variational method / zeta function / Conley index / complex dynamical system / symplectic geometry
Research Abstract

The following is the abstract for the main results obtained under this research project.
1. In the research of Hamiltonian systems, Ito generalized the notion of complete integrability for Hamiltonian systems to that for general vector fields. He proved that the integrability of an analytic vector field is equivalent to the existence of a convergent normalizing transformation near an equlibrium point that are non-resonant and elliptic. It gives an answer to the Poincare center problem.
2. In the research of ergodic theory, Morita studied the zeta function associated with two dimensional scattering billiards problem. He succeeded in extending it meromorphically to a half plane with its real part greater than some negative constant.
3. In the research of bifurcation theory of dynamical systems, Kokubu studied the generalization of Conley index theory to slow-fast systems which are singularly perturbed vector fields. He defined transition matrices when the slow variables are of dimension one, and obtained a general method for proving the existence of periodic or heteroclinic orbits.
4. By using variational method for singular Hamiltonian systems, Tanaka proved the existence of orbits such as (1) scattering type ; (2) periodic orbits under the class of perturbation of type -1/γ^2 ; (3) unbounded and chaotic motions for systems whose potential have two singular points.
5. In the research of symplectic/contact geometry, Ono succeeded in constructing the Floer homology with integer coefficients. Nakai studied 1st order PDE's from the viewpoint of foliation theory and Web geometry. In particular, he defined affine connections for those PDE's with finite type, and used them to study the singularities associated with the foliation defined by their solutions.

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] Shiga,H and Tanigawa,H: "Projective structures on Riemann surfaces with discontinnous holonomies"Trans.Amer.Math.Soc. 351. 813-823 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kokubu,H.,Mischaihov.K.and Oka,H.: "Directional transition matrix"Banach Center Publ.. 47. 133-144 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Dumortier,F.and Kokubu,H.: "Chaotic dynamics in Z_2-equivariant unfoldings of codimension 3 singularities of vector fields in IR^3"Ergodic Theory and Dynamical Systems. 20. 85-107 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Felmer,P.and Tanaka,K.: "Hyperbolic-like solutions for singular Hamiltonian systems"NoDEA Nenlinear Diff.Eq.Appl.. 7. 43-65 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Felmer,P.and Tanaka,K.: "Scattering solutions for planar singular Hamiltonian systems via minimization"Adv.Diff.Eqn.. 5. 1519-1544 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Fukaya,K.and Ono,K.: "Arnold conjecture and Gremov-Witten invariant"Topolegy. 38. 933-1048 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 国府寛司: "力学系の基礎"朝倉書店. 121 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shiga, H., Tanigawa, H: "Projective structures on Riemann surfaces with discontinuous holonomies"Trans.Amer.Math.Soc.. 351(2). 813-823 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kokubu, H., Mischaikow, K., Oka, H: "Directional transition matrix, in "Conley Index Theory" (Eds.K.Mischaikow, M.Mrozek, P,Zgliczynski)"Banach Center Publication Warsaw, Poland.. 47. 133-144 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Gedeon, T., Kokubu, H., Mischaikow, K., Oka, H.and Reineck, J.: "Conley index for fast-slow systems I : One-dimensional slow variable"Journal of Dynamics and Differential Equations. 11. 427-470 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Dumortier, F., Kokubu, H.: "Chaotic dynamics in Z_2-equivariant unfoldings of codimension 3 singularities of vector fields in R^3"Ergodie Theory and Dynamical Systems. 20. 85-107 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Felmer, P., Tanaka, K.: "Hyperbolic-like solutions for singular Hamiltonian systems"NoDEA Nonlinear Differential Equations Appl.. 7. 43-65 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Felmer, P., Tanaka, K.: "Scattering solutions for planar singular hamiltonian systems via minimization"Adv.Diff.Eqn.. 5. 1519-1544 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tanaka, K: "Periodic solutions for singular Hamiltonian systems and closed geodesics on non-compact Riemannian manifolds"Ann.Inst.H.Poincare Anal.. Non Lineaire 17. 1-33 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Fukaya, K., Ono, K: "Arnold conjecture and Gromov-Witten invariant"Topology. 38. 933-1048 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ohta, H., Ono, K: "Simple singularities and topology of symplectically filling 4-manifolds"Commentarii Mathematici Helvetici. 74. 575-590 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi