• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Numerical Methods Based on Sinc Functions

Research Project

Project/Area Number 11450038
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Engineering fundamentals
Research InstitutionNagoya University

Principal Investigator

SUGIURA Masaaki  School of engineering, Nagoya University, Professor, 工学研究科, 教授 (80154483)

Co-Investigator(Kenkyū-buntansha) MATSUO Takayasu  School of engineering, Nagoya University, Research Associate, 工学研究科, 助手 (90293670)
SUGIURA Hiroshi  School of engineering, Nagoya University, Associate Professor, 工学研究科, 助教授 (60154465)
MITSUI Taketomo  School of Human Informatics, Professor, 人間情報学研究科, 教授 (50027380)
OGATA Hidenori  Ehime University, Faculty of Engineering, Lecturer, 工学部, 講師 (50242037)
MORI Masatake  Tokyo Denki University, School of Sincence and Engineering, Professor, 理工学部, 教授 (20010936)
Project Period (FY) 1999 – 2001
KeywordsSinc functions / Sinc numerical methods / spectral methods / double exponential transformation / indefinite integrals / 2-point boundary value problems / Sturm-Liouville eigenvalue problems / Poisson equations
Research Abstract

This project aims at developing numerical methods based on Sine functions incorporated with the double exponential transformation technique. The following results have been obtained.
1. A Sinc method using the double exponential transformation technique is developed for computing indefinite integrals. Two Sinc methods using the conventional single exponential transformation technique are well-known : one is due to Kearfott, and the other due to Haber. While these well-known methods converge at the rate exp(-c-√<n>) (n : the number of function evaluations), our method converges at the rate exp(-c'n/ log n).
2. A Sinc-Galerkin method incorporated with the double exponential transformation technique for two-point boundary value problems is developed. While the rate of the convergence of the original Sinc-Galerkin method due to Stenger is exp(-c-√<n>)(n: the number of basis functions), that of our method is exp(-c'n/ logn), which is a remarkable improvement.
3. A Sinc-collocation method combined with the double exponential transformation technique for Sturm-Liouville eigenvalue problems is developed. Our method enjoyes the convergence rate O(exp(-c'n/ logn)) (n : the number of basis functions), whereas the original Sine-collocation method proposed by Lund et al. does the convergence rate O(exp(-c-√<n>)).
4. Three spectral methods using the double exponential transformation technique are developed for solving the Poisson equation on a fan-shaped domain. One employes the Sinc functions as basis functions, another does the Legendre polynomials, and the other does the Chebyshev polynomials. All the methods converge at the rate exp(-c√<n>/logn), where n is the number of basis functions.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] M.Mori, M.Sugihara: "The double exponential transformation in numerical analysis"Journal of Computational and Applied Mathematics. 127. 287-296 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Mori: "Optimality of the double exponential transformation in numerical analysis"Sugaku Expositions. 14. 103-123 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Narathip, 杉浦洋: "扇形領域におけるPoisson方程式に対するCosine-Chebyshev-Galerkin法"日本応用数理学会論文誌. 11. 133-146 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Narathip, 杉浦洋: "扇形領域におけるPoisson方程式に対するLegendre-Galerkin法"日本応用数理学会論文誌. 11. 27-40 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Sugihara: "Near-optimality of the Sinc approxoimation"Mathematics of Computation. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Sugihara: "The double exponential transformation in the Sinc-collocation method for two-Point boundary value ptrobloms"Journal of Computational and Applied Mathematics. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Mori and M. Sugihara: "The double exponential transformation in numerical analysis"Journal of Computational and Applied Mathematics. 127. 287-296 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Mori: "Oprimality of the double exponential transformation in rumerical analysis"Sugaku Expositions. 14. 103-123 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Narathip and H. Sugiura: "Legendre-Galerkin Method for Poisson Equation on a Fan-Shaped Domain(Japanese)"Transaction of the Japan Society for Industrial and Applied Mathematics. 11. 27-40 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T Narathip and H. Sugiura: "Cosine-Chebyshev-Galerkin Method for Poisson Equation on a Fan-Shaped Domain (Japanese)"Transaction of the Japan Society for Industrial and Applied Mathematics. 11. 133-146 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Sugihara: "Near-optimality of the Sinc approximation"Mathematics of Computation. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M Sugihara: "The double exponential transformation in the Sinc-collocation method for two-point boundary value problems"Journal of Computational and Applied Mathematics. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi