• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Variation of Hodge structures and hypergeometric functions

Research Project

Project/Area Number 11640012
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionUniversity of Tokyo

Principal Investigator

TERASOMA Tomohide  University of Tokyo, Departement of Mathematical Science, Associate Professor, 大学院・数理科学研究科, 助教授 (50192654)

Co-Investigator(Kenkyū-buntansha) KAWAMATA Yujiro  University of Tokyo, Departement of Mathematical Science, Professor, 大学院・数理科学研究科, 教授 (90126037)
OGUISO Keiji  University of Tokyo, Departement of Mathematical Science, Associate Professor, 大学院・数理科学研究科, 助教授 (40224133)
SAITO Takeshi  University of Tokyo, Departement of Mathematical Science, Professor, 大学院・数理科学研究科, 教授 (70201506)
KATSURA Toshiyuki  University of Tokyo, Departement of Mathematical Science, Professor, 大学院・数理科学研究科, 教授 (40108444)
Project Period (FY) 1999 – 2000
KeywordsHypergeometric functions / Toric geometry / Selberg integral / Multiple Zeta Value
Research Abstract

In the beginning of this research period, we are planning to study the relation between critical values and topological cycles for a family of toric hypersurfaces. This relateion is completely made clear. More concretely, we study them by constructing a compactification of the universal family of toric hypersurfaces in terms of convex bodies. We give an explicit comact family over the compactification of moduli associated to the secondary polytope. Using this construction, we found a correspondece between the stable cycles assciated to critical points and a formal expansion of hypergeometric functions.
Another theme of our research is on the expansion of Selberg integral with resepect to the complex exponent parameter. We obtain a complete result on this subject. We proved that the coefficient of the expansion is expressed as a linear combination of multiple zera values. The differential forms that we should consider is determined combinatorially and it happens to be equal to β-nbc base after Falk-Terao. We expect further developement in this directions.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] T.Terasoma: "Convolution theaem foron-degenerate maps and comportesingular ties"J.Algebraic Geom.. 9.no2. 265-287 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Terasoma: "Selberg integrals and multiple zeta values"to appear from comporition math..

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Saito-T.Terasoma: "Determinant of period in tegrals"J.Amer.Math.Soc.. 10no4. 865-937 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Oguiso-T.Petenell: "Calabi Yau three folds with positive chern clars"Comm in Analysis and Geometry. 6. 153-172 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kawamato: "On the extension problem of pluricanonical forms"Contemporary math.. 241. 193-207 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Katyure-Gv.d Geer: "On a stratification of the moduli of k3 surfaces"J.European math.Soc.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Terasoma: "Convolution theromre for non-dengenerate maps and composite singularities"J.Algebraic Geom.. vol 9.no.2. 265-287 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Terasoma: "Selberg integrals and multiple zeta values"Compositio Math.. (to appear.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Saito-T.Terasoma: "Determinant of period integral"J.Amer.Math.Soc.. vol 10 no.4. 865-937 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Oguiso-T.Peternell: "Calabi Yau threefolds with positive Chern class, Comm."in Analysis and Geometry. vol 6. 153-172 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Kawamata: "On the extension problem of pluricanonical forms"Contemporary maht.. Vol 241. 193-207 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Katsura-G.v.d.Geer: "On a stratification of the moduli of K3 surfaces"J.European Math.Soc.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi