• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Ring extensions and quotient rings

Research Project

Project/Area Number 11640014
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTOKYO GAKUGEI UNIVERSITY

Principal Investigator

YOSHIMI Tokuhiro (北村 好)  Tokyo Gakugei Univ., Faculty of Education, Professor, 教育学部, 教授 (00014811)

Co-Investigator(Kenkyū-buntansha) SEKIZAWA Masami  TOKYO GAKUGEI UNIVERSITY, Faculty of Education Professor, 教育学部, 教授 (80014835)
MIYACHI Jun-ichi  TOKYO GAKUGEI UNIVERSITY, Faculty of Education associate Professor, 教育学部, 助教授 (50209920)
MASAIKE Kanzo  TOKYO GAKUGEI UNIVERSITY, Faculty of Education Professor, 教育学部, 教授 (40015798)
IKEDA Yoshito  TOKYO GAKUGEI UNIVERSITY, Faculty of Education associate Professor, 教育学部, 助教授 (70014834)
TANAKA Yoshio  TOKYO GAKUGEI UNIVERSITY, Faculty of Education Professor, 教育学部, 教授 (90014810)
Project Period (FY) 1999 – 2000
Keywordsquashi Frobenius eytension / artinian ring / noetherian ring / maximal quotient ring / module / full linear ring
Research Abstract

It is shown that for a quasi-Frobenius extension A of a right non-singular ring B if A is a right self-injective ring, then so is B.An example of a Frobenius extension A/B such that A is a simple Artinian ring but B is not a self-injective ring is given. Let A be a quasi-Frobenius extension of B.It is shown that if B_B is U-Noetherian for a right B-module U, then A is V : =Hom_B(A, U)-Noetherian. it is also shown that if U_B is a right B-module which is faithful, injective and torsionless, then the quotient ring of A with respect to V_A is a quasi-Frobenius extension of the quotient ring of B with respect to U_B.
Let R be a right semi-hereditary ring with a maximal right quotient ring Q such that Q is a left flat epimorphism of R.If Q is a direct product of right full linear rings, then R is a direct product of rings whose maximal right quotient rings are full linear rings.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Miyachi, jun-ichi: "Injective resolutions of noerherian rings and cogenerators"Proc. Amer. Math. Soc.. 128. 2233-2242 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Sekizawa, Masami: "On tangent sphere bundles with smallor large constant radius"Annals of Global Analysis and Geometry. 18. 207-219 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Sekizawa, Masami: "Three-dimensional conformally flat pseudo-symmetric spaces of constant type"Archivum Mathematigum (Brno). 36. 279-286 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Sekizawa, Masami: "On the scalar curvature of tangent sphere bundles with arbitrary constant radius"Bull. Greek Math. Sco.. 44. 17-30 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tanaka, Yoshio: "Point-countable k-networks and maps"Q. and A. in General Topology. 17. 101-108 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tanaka, Yoshio: "Theory of k-networks II"Q. and A. in General Topology. 19. 1-20 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Miyachi, Jun-ichi: "Injective resolutions of noetherian rings and cogenerators."Proc.Amer.Math.Soc.. 128. 2233-2242 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Sekizawa, Masami: "On tangent sphere bundles with small or large constant radius"Annals of Global Analysis and Geometry. 18. 207-219 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Sekizawa, Masami: "Three-dimensional conformally flat pseudo-symmetric spaces of constant type"Archivum Mathematigum(Brno). 36. 279-286 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Sekizawa, Masami: "On the scalar curvature of tangent sphere bundles with arbitrary constant radius"Bull.Greek Math.Soc.. 44. 17-30 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tanaka, Yoshio: "Point-countable K-networks and maps"Q.and A.in General Topology. 17. 101-108 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tanaka, Yoshio: "Theory of K-networks II"Q.and A.in Gneral Topology. 19. 1-20 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi