• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

On ring-theoretical invariants of singular points in positive characteristic

Research Project

Project/Area Number 11640021
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

YOSHIDA Kenichi  Nagoya University Graduate School of Mathematics, Assistant, 大学院・多元数理科学研究科, 助手 (80240802)

Co-Investigator(Kenkyū-buntansha) MUKAI Shigeru  Kyoto University, Research Institute for Mathematical Sciences, Professor, 数理解析研究所, 教授 (80115641)
HASHIMOTO Mitsuyasu  Nagoya University Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (10208465)
OKADA Soichi  Nagoya University Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (20224016)
Project Period (FY) 1999 – 2001
KeywordsHilbert-Kunz multiplicity / regular / Cohen- Macaulay / F-rational / rational singularity / multiplicity / tight closure / integral closure
Research Abstract

We have studied Hilbert-Kunz multiplicity as an invariant of singular points in positive char acteristic for three years. The most important result in our work is to give a characterization of regular local rings in terms of Hilbert-Kunz multiplicity. Actually, many researchers tried to gener alize our theorem. After this research, we have studied Hilbert-Kunz multiplicity of ideals defined by the dual graph of the resolution of singularities. Note that Hilbert-Kunz multiplicity for such an ideal is a ring-theoretical invariant associated to isolated singularity in positive characteristic. As one of our results, for integrally closed ideals in a rational double point, we obtained algorithm for calculating their Hilbert-Kunz multiplicities in terms of the dual graph. On the other hand, we have tried calculation of Hilbert-Kunz multiplicity for blow-up rings, but we could not get complete algorithm. As a partial result, we get some inequalities with respect to blow-up rings and the basering.
Also, we introduced the notion of the minimal Hilbert-Kunz multiplicity and gave several method for calculation. This invariant can be described as the difference of the Hilbert-Kunz multiplicities of some pairs of ideals. Furthermore, we found that this invariant is equal to the invariant which is defined by other researchers. We gave a presentation of our results as above at Symposium on Commutative algebra and at Symposium on Algebra on Summer in 2001. Also, we have a project to study blow-up rings in positive characteristic.

  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] Kei-ichi Watanabe, Ken-ichi Yoshida: "Hilbert-Kunz multiplicity and an inequality between multiplicity and colength"J. Algebra. 230. 295-317 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kei-ichi Watanabe, Ken-ichi Yoshida: "Hilbert-Kunz multiplicity of two-dimensional local rings"Nagoya Math. J.. 162. 87-110 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kei-ichi Watanabe, Ken-ichi Yoshida: "Hilbert-Kunz multiplicity, McKay correspondence and Good ideals in two-dimensional Rational Singularities"manus. math.. 104. 275-294 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Nobuo Hara, Kei-ichi Watanabe, Ken-ichi Yoshida: "F-rationality of Rees algebras"J. Algebra. (in press).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Nobuo Hara, Kei-ichi Watanabe, Ken-ichi Yoshida: "Rees algebras of F-regular type"J. Algebra. (in press).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mitsuyasu Hashimoto: "Good filtrations of symmetric algebras and strong F-regularity of invariant subrings"Math. Z.. 236. 605-623 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mitsuyasu Hashimoto: "Auslander-Buchweitz Approximations of Equivariant Modules"281 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kei-ichi Watanabe and Ken-ichi Yoshida: "Hilbert-Kunz multiplicity and an inquality between multiplicity and colength"J. Algebra. 230. 295-317 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kei-ichi Watanabe and Ken-ichi Yoshida: "Hilbert-Kunz multiplicity of two-dimensional local rings"Nagoya Math. J.. 162. 87-110 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kei-ichi Watanabe and Ken-ichi Yoshida: "Hilbert-Kunz multiplicity, McKay correspondence and Good ideals in twodimensional Rational Singularities"manus.math.. 104. 275-294 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nobuo Hara, Kei-ichi Watanabe and Ken-ichi Yoshida: "Frationality of Rees algebras"J. Algebra. in press.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nobuo Hara, Kei-ichi Watanabe and Ken-ichi Yoshida: "Rees algebras of F-regular type"J. Algebra. in press.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mitsuyasu Hashimoto: "Good nitrations of symmetric algebras and strong F-regularity of invariant subrings"Math. Z.. 236. 605-623 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi