• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Combinatorial semigroup theory and its applications

Research Project

Project/Area Number 11640028
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionShimane University

Principal Investigator

SHOJI Kunitaka  Shimane University, Interdisiplinary Faculty of Sicence and Engineering, Professor, 総合理工学部, 教授 (50093646)

Co-Investigator(Kenkyū-buntansha) KONDO Michiro  Shimane University, Interdisiplinary Faculty of Sicence and Engineering, Asociate Professor, 総合理工学部, 助教授 (40211916)
MIWA Takuo  Shimane University, Interdisiplinary Faculty of Sicence and Engineering, Professor, 総合理工学部, 教授 (60032455)
IMAOKA Teruo  Shimane University, Interdisiplinary Faculty of Sicence and Engineering, Professor, 総合理工学部, 教授 (60032603)
OZAKI Manabu  Shimane University, Interdisiplinary Faculty of Sicence and Engineering, Lecturer, 総合理工学部, 講師 (80287961)
UEDA Akira  Shimane University, Interdisiplinary Faculty of Sicence and Engineering, Asociate Professor, 総合理工学部, 助教授 (70213345)
Project Period (FY) 1999 – 2000
Keywordssemigroup / amalgamation / generalized *-semigroup / Fiber / homotopy / Logic programming / Retract / Iwasawa invariant
Research Abstract

(1) The decidability problem of whether a finite semigroup is an amalgamation bases for semigroups or not remains unsolved. Representation extension property is a necessary condition for a semigroup to be an amalgamation base for semigroups. We proved decidability. of the problem of whether a finite semigroup has representation extension property or not. By using Software "Mathematica" we constructed a finite regular semigroup which has representation extension property but is not an amalgamation base for semigroups.
(2) We studied about the equivalence of the property 'Mbeing an amalgamation base for semigroups and the property 'Mbeing an amalgamation base for finite semigroups. Consequently, we obtained that every semigroup which is an amalgamation base for finite semigroups has representation extension property. Also we determined the strucure of finite bands which is an amalgamation base for finite semigroups. We gave semigroup-theoretical proof of Ok'nski and Putcha's theorem by entending Neumann's method from groups to semigroups.
(3) We introduced representation of generalized *-inverse semigroups and proved that the class of generalized *-inverse semigroups has strong amalgamation property. We proved decidability of DBLlogics in sematice of Logical Programming. We characterized completeness theorem for Logical Programming by making use of distributive lattices. Also we characterized prime and primary ideals of Pr'fer domain in a simple Artinian ring with finite dimension over its center.
(4) We studied Fiber homotopy and introduced fibrewise fibration and cofibration into the category of maps. Further, we obtained several results on absolute retraction and contractiblity of the category of maps.
(5) Let K be a cubic cyclic field with prime conductor. We gave simple sufficient conditions for λ_3 (K) = μ_3 (K) = 0, where λ_3 (K), μ_3 (K) are Iwasawa λ-invariant, μ-invariant of the cyclotomic Z_3-extension of K, respectively.

  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] K.Shoji: "Commutative semigroups which are amalgamation bases"Journal of Algebra. (To appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.E.Hall: "Finite bands and amalgamation bases for finite semigroups"Communications in Algebra. (To appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Imaoka: "Representations of generalized ^*-inverse semigroups byright ω-cosets"Math.Japonica. 52. 1-7 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hattori: "A new approach to fibrewise fibrations and cofibrations"Topology and its applications. (To appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kondo: "Decidability of DBL logic in the semantics of logic programming"East J.Math.Sci.. 2. 173-180 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Ozaki: "Iwasawa λ_{3}-invariants of certain cubic fields"Acta Math.. (To appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Marubayashi: "Prime and primary ideals in a Prufer order over simple Artinian ring with finite dimension over its center"Canad.Math.Bull. 42. 371-379 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.E.Hall: "Representations and amalgamation of generalized inverse ^*-semigroups"Semigroup Forum. 58. 126-141 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] D.Buhagiar: "On metrizable type (MT-) maps and spaces"Topology and its applications. 96. 31-51 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Shoji: "Decidability of representation extension property"Proc.Amer.Math.Soc.. 128. 1313-1317 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Shoji: "Regular semigroups which have (REP) and (REP)^{op} is not necessarily amalgamation bases"Semigroup Forum. (To appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kondo: "Completeness theorem for the logic characterized by distributive bilattices"Far East Jour.of Math.Sci.. (To appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.E.Hall: "Representations and amalgamation of generalized inverse *-semigroups"Semigroup Forum. 58. 126-141 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] D.Buhagiar: "On metrizable type (MT-) maps and spaces"Topology and its applications. 96. 31-51 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Marubayashi: "Prime and primary ideals in a Prufer order over simple Artinian ring with finitedimension over its center"Canad.Math.Bull.. 42. 371-379 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Shoji: "Decidability of representation extension property"Proc.Amer.Math.Soc.. 128. 1313-1317 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Imaoka: "Representations of generalized inverse-semigroups by ω-cosets"Math.Japonica. 52. 1-7 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kondo: "Deceidability of DBL logic in the semantics of logic programming"Far East Jour.of Math.and Math.Scie.. 2 (2). 173-180 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Shoji: "Commutative semigroups which are semigroup amalgamation bases"J.Algebra. (To appear.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Shoji: "Regular semigroups which have (REP) and (REP)^<op> is not necessarily amalgamation bases"Semigroup Forum. (To appear.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.E.Hall: "Finite bands and amalgamation bases for finite semigroups"Communications in Algebras. (To appear.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Hattori: "A new approach to fibrewise fibration and cofibrations"Houston J.Math.. (To appear.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kondo: "Completeness theorem for the logic characterized by distributive bilattices"Far East Jour.of Math.Scie.Toappear.. (To appear.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.M.Ozaki: "Iwasawaλ_3-invariants of certain cubic fields"Acta Math.. (To appear.).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi