• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

On the compactification of Witt group schemes and the deformation of Art theory

Research Project

Project/Area Number 11640045
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionChuo University

Principal Investigator

SEKIGUCHI Tsutomu  Chuo Univ.,. Fac. of Sci. & Engi., Prof., 理工学部, 教授 (70055234)

Co-Investigator(Kenkyū-buntansha) MATSUYAMA Yoshio  Chuo Univ.,. Fac. of Sci. & Engi., Prof., 理工学部, 教授 (70112753)
MOMOSE Fumiyuki  Chuo Univ.,. Fac. of Sci. & Engi., Prof., 理工学部, 教授 (80182187)
SUWA Noriyuki  Chuo Univ.,. Fac. of Sci. & Engi., Prof., 理工学部, 教授 (10196925)
AOKI Kazuyoshi  Chuo Univ.,. Fac. of Sci. & Engi., Prof., 理工学部, 助教授 (50055159)
YAMAMOTO Makoto  Chuo Univ.,. Fac. of Sci. & Engi., Prof., 理工学部, 教授 (10158305)
Project Period (FY) 1999 – 2001
Keywordsgroup scheme / Kummer theory / Artin-Scheme-Witt theory / Witt vector / Artin-hasse exponential series / extension of group schemes / Cartier module
Research Abstract

Already we have showed the existence of group schemes which gave the deformations of the group schemes of Witt vectors to tori. Using those group schemes we could contract the unified Kummer-Artin-Schreier-Witt theory. But, when we want to apply the theory to some problems, for example, the lifting problem of cyclic coverings of algebraic curves, partially solved by Green-Matignon, we need more explict description of the group schemes. In 1999 and 2000, we devoted ourselves to construct concretely the group schemes giving the deformations of the group schemes of Witt vectors to tori, and we succeeded to descrive such group schemes by using several Witt vectors. In the background, there is the Cartier thory, and our thory is given by the representation of that by virtue of deformed Artin-Hasse exponential series.
To descrive the ramifications of cyclic coverings, we need to compactfy such group schemes. In positive characteristic case. Garuti gave a nice compactifications of group schemes of Witt vectors by means of ruled surfaces. We tried to give compactifications of the deformed group schemes also, even it is in two-dimensional case, and we are on the way to investigate the description of ramification locuses geometrically.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] Tsutomu Sekiguchi: "On the unified Kummer-Artin-Schreier-Witt theory"Mathematiques Pures de Bordeaux C.N.R.S., Prepublication. 111. 1-90 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tsutomu Sekiguchi: "A note on extensions of algebraic and formal groups IV"Tohoku Math.J.. 53. 203-240 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tsutomu Sekiguchi: "On the unification of Kummer and Artin-Schreier-Witt theories"KIMS Kokyuriku, Alyelorau runnier theoy and related topics. 1200. 1-12 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tsutomu Sekiguchi: "A note on extensions of algebraie and formal groups, V"Preprint. 1-58 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Sekiguchi & N. Suwa: "On the unified Kummer-Artin-Schreier- Witt theory"Mathematiques Pures de Bordeaux C.N.R.S., Prepublication. n^0 111. 1-90 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sekiguchi & N. Suwa: "A note on extensions of algebraic said formal groups IV"Tohoku Math. J.. 53. 203-240 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sekiguchi & N. Suwa: "On the unificationn of Kummer and Artin-Schreier- Witt theories"RIMS Kokyuroku 1200, Algebraic number theory and related topics, April, 2001. 1-12

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Sekiguchi & N. Suwa: "A note on extensions of algebraic and formal groups V"(Preprint). (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi