• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Resarch on ideal class groups and the distribution of primes

Research Project

Project/Area Number 11640046
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo University of Science

Principal Investigator

TAKASHI Agoh  Tokyo University of Science,fac of Tech.and sci,professor, 理工学部, 教授 (60112893)

Co-Investigator(Kenkyū-buntansha) TAMIO Hara  Tokyo University of Science,fac of Tech.,Ass.professor, 工学部, 助教授 (10120205)
TAKAO Kobayashi  Tokyo University of Science,fac of Tech.and sci,Ass.professor, 理工学部, 助教授 (90178319)
TOSHIAKI Shoji  Tokyo University of Science,fac of Tech.and sci,professor, 理工学部, 教授 (40120191)
RYUICHI Tanaka  Tokyo University of Science,fac of Tech.and sci,Lecture, 理工学部, 講師 (10112898)
TOSHIKO Hosoh  Tokyo University of Science,fac of Tech.and sci,Lecture, 理工学部, 講師 (30130339)
Project Period (FY) 1999 – 2001
Keywordsideal class group / Stickelberger ideal / Class number and unit / Bermoulli number / regular・irregular prime / zeta function / distribution of primes / sieve method
Research Abstract

On ideal calss groups we first calculated class numbers of cyclotomic fields and group indices of Stickelberger ideals in a group ring using computer, and deduced some formulae for relative class numbers by observing specific properties of Stckelberger subideals related to the Kummer-Mirimanoff sysytem of congruences. Consequently, a certain partial structure of ideal class group could be elucidated. Further, we investigated the Ankeny-Artin-Chowla conjecture and some applicable necessary and sufficient conditions were obtained. On the distribution of primes we treated some secial primes (e. g. irregular primes, SG primes, twin primes, primes of the form X^2+1, Wilson primes, and others) and derived the Legendre type prime counting functions for SG primes and primes of the form X^2+1.Using these it was pos sible to estimate upper bounds for the number of these primes. The p-divisibility problem of the class number of the p-th cyclotomic field is deeply concerned with a behavior of Bernoulli numbers. And then, we mainly studied generalizations of Lehmer's congruences, recurrences of special types and Voronoi'type congruences to obtain definite results. On the other hand, we could exploit a new relation involvi ing Bernoulli numbers and Fermat-Euler quotients, which led without difficulty to several important properties of class numbers of quadratic fields.

  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] 吾郷孝視: "Congruences involving Bernoulli number and Fermat-Euler quotients"J. of Number Theory. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 吾郷孝視: "On Sophie Germain primes"Tatra Mt. Math. Publ.. 20. 65-73 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 吾郷孝視: "Recurrences of Bernoulli and Euler polynomials and numbers"Expositiones Math.. 18. 197-214 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 吾郷孝視: "Generalization of Lehmer's congruences for Bernoulli numbers"C.R. Math. Rep. Acad. Sci. Canada. 22. 61-65 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 庄司俊明: "Representations of finite chevalley groups"Advanced Studies in Pure Math.. 32. 369-378 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 細尾敏男: "Compactification of family of quartic del pezzo surfaces"Expositiones Math.. 19. 91-95 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 吾郷孝視(訳編): "素数の世界-その探索と発見-(第2版)"共立出版(株). 248 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takashi Agoh: "Congruences involving Bernouli numbers and Fermat-Euler guotients"J.of Number Theory. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takashi Agoh: "On Sophie Germain Primes"Tatra Mt.Math.Publ.. 20. 65-73 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takashi Agoh: "Recturrences for Bernoulli and Euler polynomials and numbers"Expositiones Math.. 18. 197-214 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takashi Agoh: "Generalisation of Lehmer's congruences for Bernouli numbers"C.R.Math.Rep.Acad.Sci.Canada. 22. 61-65 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toshiaki Shoji: "Representations of finite Chevalley groups"Advanced Studies Pure Math. 32. 369-378 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toshio Hosoh: "Compactification of a family of quartic del Pezzo surfaces"Expositions Math. 19. 91-95 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi