• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

A topological study of the moduli space of Riemann surface

Research Project

Project/Area Number 11640054
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionThe University of Tokyo

Principal Investigator

KAWAZUMI Nariya  University of Tokyo, Department of Mathematical Sciences, Associate Professor, 大学院・数理科学研究科, 助教授 (30214646)

Co-Investigator(Kenkyū-buntansha) OHBA Kiyoshi  Ochanomizu University, Faculty of Science, Assistant, 理学部, 助手 (80242337)
MORITA Shigeyuki  University of Tokyo, Department of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (70011674)
MATSUMOTO Yukio  University of Tokyo, Department of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (20011637)
AKITA Toshiyuki  Hokkaido University, Faculty of Science, Associate Professor, 大学院・数学研究科, 助教授 (30279252)
SHIBUKAWA Youichi  Hokkaido University, Faculty of Science, Assistant, 大学院・数学研究科, 助手 (90241299)
Project Period (FY) 1999 – 2001
KeywordsRiemann surface / moduli space / Morita-Mumford classes / surface symmetry / Bruschi-Calogero equation / hyperelliptic mapping class group / Magnus expansion / mapping class group
Research Abstract

Rational cohomology of the mapping class group (Morita and Kawazumi) : We proved the Morita-Mumford classes generate the primary approximation to the cohomology of the moduli of Riemann surfaces induced by the Johnson homomorphisms even in the unstable range. We gave a complete description how the corresponding twisted Morita-Mumford classes behave when a finite graph degenerates.
Differential geometry of the moduli and Magnus expansions (Kawazumi) : Using Magnus expansions of a free group, we obtain an alternative proof of the IH-relation among the Johnson homomorphims. The notion of the harmonic Magnus expansion, which is canonicaly given by a complex structure of a surface, gives an interpretation of differential forms representing Morita-Mumford classes. We compute the quasi-conformal variation of the harmonic Magnus expansions as an explicit quadratic differential. We expect that the quadratic differential would give the key to the Johnson images of the mapping class groups.
Torsion cohomology of the mapping class groups (Akita and Kawazumi) : Akita has given fascinating conjectures related to Morita-Mumford classes on the whole mapping class groups. We proved them for any semi-free cyclic subgroup. Kawazumi proved them for the hyperelliptic mapping class groups. Akita proved the twice of the odd Morita-Mumford classes are functions of G-signatures for any finite subgroup G of the mapping class groups.
Bruschi-Calogero equation (Shibukawa and Kawazumi) : We gave all the meromorphic solutions of the equation. Shibukawa gave the complete classification of the R-matrices acting on the germs of meromorphic functions.
The details and other results are reported in the official booklet written in Japanese.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] N.Kawazumi, S.Morita: "The primary approximation to the cohomology of the moduli space of curves and cocycles for the Mumford-Morita-Miller classes"Preprint UTMS. 2001-13. (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Kawazumi: "Weierstrass points and Morita-Mumford classes on hyperelliptic mapping class groups"Topology and its appl.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Akita, N.Kawazumi, T.Uemura: "Periodic surface automorphisms and algebraic independence of Morita-Mumford classes"J. Pure Appl. Alg.. 160. 1-11 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Kawazumi, Y.Shibukawa: "The meromorphic solutions of the Bruschi-Calogero equation"Publ. RIMS Kyoto Univ.. 36. 85-109 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Hashimoto, K.Ohba: "Cutting and pasting of Riemann surfaces with abelian differential"Intern. J. Math.. 10. 587-617 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Akita: "Nilpotency and triviality of mod p Morita-Mumford classes of mapping class groups of surfaces"Nagoya Math. J.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N. Kawazumi and S. Morita: "The primary approximation to the cohomology of the moduli space of curves and cocycles for the Mumford-Morita-Miller classes"preprint. UTMS 2001-13 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Kawazumi: "Weierstrass points and Morita-Mumford classes on hyperelliptic mapping class groups"Topology and its appl.. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Akita, N. Kawazumi and T. Uemura: "Periodic surface automorphisms and algebraic independence of Morita-Mumford classes"J. Pine Appl. Alg.. 160-1. 1-11 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Kawazumi and Y. Shibakawa: "The meromorphic solutions of the Bruschi-Calogero equation"Publ. RIMS Kyoto Univ.. 36. 85-109 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Hashimoto and K. Ohba: "Cutting and pasting of Riemann surfaces with abelian differentials, I"Intert. J. Math. 10. 587-617 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Akita: "Nilpotency and triviality of mod P Morita-Mumford classes of mapping class groups of surfaces"Nagoya Math. J.. (in press).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi