• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Discrete groups and geometry of ideal boundary

Research Project

Project/Area Number 11640056
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTohoku University

Principal Investigator

IZEKI Hiroyasu  Tohoku University, Mathematical Institute, Ass.Prof., 大学院・理学研究科, 助教授 (90244409)

Co-Investigator(Kenkyū-buntansha) AKUTAGAWA Kazuo  Shizuoka University, Department of Mathematics, Ass.Prof., 理学部, 助教授 (80192920)
NAKAGAWA Yasuhiro  Tohoku University, Mathematical Institute, Lect., 大学院・理学研究科, 講師 (90250662)
SUNADA Toshikazu  Tohoku University, Mathematical Institute, Prof., 大学院・理学研究科, 教授 (20022741)
NAYATANI Shin  Nagoya University, Graduate School of Mathematics, Ass.Prof., 大学院・多元数理科学研究科, 助教授 (70222180)
Project Period (FY) 1999 – 2000
Keywordsdiscrete groups / rigidity / ideal boundary / Kleinian groups / conformally flat / index theorem / scalar curvature
Research Abstract

The purpose of this project was to investigate the stability/rigidity of discrete groups from the viewpoint of geometry of the ideal boundary of negatively curved spaces and the cohomology of deiscrete groups. Our main result is summarized as follows.
Let Γ be a Kleinian group acting on n-sphere. If Γ is convex cocompact, the quotient of the domain of discontinuity is compact by definition. However, the converse is not true in general. Izeki (head investigator) showed that if the Hausdorff dimension of the limit set of Γ is less than n/2 and the quotient of the domain of discontinuity is compact, then Γ is convex cocompact. As a consequence, such a Γ is quasiconformally stable. We also gave several applications to topology and geometry of conformally flat manifolds with positive scalar curvature.
In case the Hausdorff dimension of the limit set is less than (n-2)/2, we found a proof using the index theorem for higher A^^<^>-genus. We applied the index theorem to the quotient of the domain of discontinuity. We note here what we mean by the ideal bounary is just the quotient of the domain of discontinuity. The higher A^^<^>-genus carries the information of the fundamental group, which turns out to be isomorphic to Γ in our case, and that is all that the higher A^^<^>-genus knows. And it is determined by the cohomology of Γ.

  • Research Products

    (30 results)

All Other

All Publications (30 results)

  • [Publications] H.Izeki: "Quasiconformal stability of kleinian groups and an embedding of a space of flat conformal structures"Conform.Geom.Dyn,. 4. 108-119 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kotani and T.Sunada: "Jacobin tori associated with a finite graph and its abelian covering graphs"Adv.in Appl.Math.. 24. 89-110 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kotari and T.Sunada: "Standard realization of crystal lattice via harmonic maps"Trans.Amer.Math.Soc.. 353. 1-20 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kotani and T.Sunada: "Albanese maps and off diagonal long time asymptotics for the heat kernels"Comm.Math.Phys.. 209. 633-670 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kotani and T.Sunada: "Zeta functions of finite graphs"J.of Math.Sci.Univ.Tokyo. 7. 7-25 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kotani and T.Sunada: "The Pressure and higher correlations for an Anosov diffeomorphisms"Ergod.Th.Dynam.Sys.. 21. 1-15 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Futaki and Y.nakagaura: "Characters of antomorphisms groups associated with kahler classes and functionals with cocycle conditions"Kodai Math.J.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Nakagawa: "Bando-Calabi-Futaki character of compact toric manifolds"Tohoku Math.J.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Akutagawa and R.Aiyama: "Kenmotsu type representation formula for surfaces with prescribed mean curvature in the de sitter 3-space"Tsukuba J.Math.. 24. 189-196 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Akutagawa and R.Aiyama: "Kenmotsu type representation formulas for surfaces with prescribed mean curvature in the hyperbolic 3-space"J.Math.Soc.Japan. 52. 877-898 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Akutagawa and R.Aiyama: "The Dirichlet problem at infinity for harmonic map equations arising from constant mear curvature surfaces in the hyperbolic 3-space"Calc.Var.Partial Differential Equations. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Izeki: "Quasiconformal stability of Kleinian groups and an embedding of a space of flat conformal structures"Conform.Geom.Dyn.. 4. 108-119 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sunada: "Co-growth functions and spectra of the adjacency operators for finitely generated groups"J.Math.Soc.Japan. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sunada with M.Kotani: "Jacobian tori associated with a finite graph and its abelian covering graphs"Adv.in Appl.Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sunada with M.Kotani: "Standard realization of crystal lattice via harmonic maps"Trans.Amer.Math.Soc.. (to apppear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sunada with M.Kotani: "Albanese maps and off diagonal long time asymptotics for the heat kernels"Comm.Math.Phys.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sunada with M.Kotani: "Zeta functions of finite graphs"J.MS.Univ.Tokyo. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sunada with M.Kotani: "The pressure and higher correlations for an Anosov diffeomorphism"Erg.Th.Dyn.Sys.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Nakagawa with A.Futaki: "Characters of automorphism groups associated with Kahler classes and functionals with cocycle conditions"Kodai Math.J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Nakagawa: "Bando-Calabi-Futaki character of compact toric manifolds"Tohoku Math.J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Akutagawa with R.Aiyama: "Kenmotsu-Bryant type representation formulas for constant mean curvature surfaces in H^3 (-c^2) and S^3_1 (c^2)"Ann.Global Anal.Geom.. 17. 49-75 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Akutagawa: "Spin^c geometry, the Seiberg-Witten equations and Yamabe invariants of Kahler surfaces"Interdisciplinary Inform.Sci.. 5. 55-72 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Akutagawa with R.Aiyama: "Representation formulas for surfaces in H^3 (-c^2) and harmonic maps arising from CMC surfaces, "Harmonic Morphisms, Harmonic Maps and Related Topics" (ed.by C.Anand et al., Brest 1997)"Chapman & Hall/CRC Research Notes in Math.. 413. 275-285 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Akutagawa: "Harmonic maps between hyperbolic spaces"Amer.Math.Soc.Transl., Sugaku Expositions. (2)12. 151-165 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Akutagawa with R.Aiyama, R.Miyaoka and M.Umehara: "A global correspondence between CMC-surfaces in S^3 and pairs of non-conformal harmonic maps into S^2"Proc.Amer.Math.Soc.. 128. 939-941 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Akutagawa with R.Aiyama: "Kenmotsu type representation formula for surfaces with prescribed mean curvature in the 3-sphere"Tohoku Math.J.. 52. 95-105 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Akutagawa with R.Aiyama: "Kenmotsu type representation formula for surfaces with prescribed mean curvature in the de Sitter 3-space"Tsukuba J.Math.. 24. 189-196 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Akutagawa with R.Aiyama: "Kenmotsu type representation formulas for surfaces with prescribed mean curvature in the hyperbolic 3-space"J.Math.Soc.Japan. 52. 877-898 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Akutagawa with R.Aiyama: "The Dirichlet problem at infinity for harmonic map equations arising from constant mean curvature surfaces in the hyperbolic 3-space"Calc.Var.Partial Differential Equations. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Nayatani: "Discrete groups of complex hyperbolic isometries and pseudo-Hermitian structures, Analysis and Geometry in Several Complex Variables (Katata, 1997) Trends in Mathematics"Birkhauser, Boston. 209-237 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi