• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Spin^q structures and the adiabatic limit

Research Project

Project/Area Number 11640061
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionSaitama University

Principal Investigator

NAGASE Masayoshi  Saitama University, Dept. of Math., Professor, 理学部, 教授 (30175509)

Co-Investigator(Kenkyū-buntansha) SAKAMOTO Kunio  Saitama Univ., Dept. of Math., Professor, 理学部, 教授 (70089829)
MIZUTANI Tadayoshi  Saitama University, Dept. of Math., Professor, 理学部, 教授 (20080492)
OKUMURA Masafumi  Saitama Uiv., Dept. of Math., Professor, 理学部, 教授 (60016053)
EGASHIRA Shinji  Saitama Univ., Dept. of Math., Assistant Professor, 理学部, 助手 (00261876)
SAKAI Fumio  Saitama Univ., Dept. of Math., Professor, 理学部, 教授 (40036596)
Project Period (FY) 1999 – 2001
KeywordsSpin / twistor / chiral anomaly / Dirac operator
Research Abstract

As for the infinitesimal chiral anomaly used in physics, the head investigator felt some ambiguity about how to define that, what should be investigated, etc., as a mathematical object. In the project, he proposed its mathematical definition and tried to withdraw its essential part
His previous study says that a Spin^q manifold possesses a canonical CP^1-fibration and its total space called a twistor space has a canonical Spin structure. The structure induces the Dirac operator θ. First, its infinitesimal variation δ_χθ in the X-direction, where X is a cross-section of a certain adjoint bundle, and its anomaly denoted log det δ_χθ were defined from the mathematical viewpoint. Since the corresponding spinor bundle also changes it is nonsense to take naively the variation of θ. Hence it was essential how to interpret δ_χθ. Second, he tried to withdraw an essential part of the anomaly. After the analogy of the physical twistor theory and the creating theory of the universe, he considered the operation of collapsing each fiber into one point (returning to the pre-universe), i.e., the operation of taking the adiabatic limit, to produce its essential part denoted lim_<ε→0> log det δ_xθ_ε. In the latter half of the project, to investigate the limit was the main purpose. He conjectured the essential part lim_<ε→0> log det δ_χθ_ε depends essentially on the behavior when ε → 0 of Tr(δ_χθ_ε・θ_εe^<-tθ^<^2_ε>>) under the condition 0 < t < ε^a (a>0) and has nearly finished its study.

  • Research Products

    (17 results)

All Other

All Publications (17 results)

  • [Publications] Masayoshi Nagase: "Twistor space and the Seiberg-Witten equation"Saitama. Math. J.. 18. 39-60 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masayoshi Nagase: "Twistor spaces and the adiabatic limits of Dirac operators"Nagoya Math. J.. 164. 53-73 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masayoshi Nagase: "The adiabatic limits of signature operators for Sping manifolds"Osaka J. of Math.. 38. 541-564 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tadayoshi Mizutani: "On exact Poisson manifolds of dimension 3"Proc. of conference "Foliations : Gamelay and Dynamics".

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Djoric, M.Okumura: "On contact submanifolds in complex projective space"Math. Nachr.. 202. 17-23 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] F.Sakai, K.Tono: "Rational cuspidal curves of type (d, d-2) with one or two cusps"Osaka. J. of Math.. 37. 405-415 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 矢野 環: "君台観左右帳記の総合研究"勉誠出版. 852 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Nagase: "Twistor space and the Seiborg-Witten equation"Saitama Math. J.. 18. 39-60 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Nagase: "Twistor spaces and the adiabatic limits of Dirac operators"Nagoya Math. J.. 164. 53-73 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Nagase: "The adiabatic limits of signature operators for Spin^* manifolds"Osaka J. Math.. 38. 541-564 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Mizutani: "On exact Poisson manifolds of dimension 3"Proc. of Conference "Foliations : Geometry and Dynamics.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Mikami, T. Mizutani: "Foliations associated with Nambu-Jacobi structures"(preprint).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Djoric and M. Okumura: "On contact submanifolds in complex projective space"Math. Nachr.. 202. 17-23 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Okumura: "CR submanifolds of maximal CR dimension of complex projective space"Bull. of the Greek Math. Soc.. 44. 31-39 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Sakamoto: "Variational problems of normal curvature tensor and concircular scalar fields"(preprint).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] F. Sakai, K. Tono: "Rational cuspidal curves of type (d,d-2) with one or two cusps"Osaka J. Math.. 37. 405-415 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] F. Sakai: "Defining equations of rational cuspidal curves with one or two place at infinity"Tagungsbericht, Affine Algebraic Geometry, Oberwolfach. 16-16 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi