• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Topology of knots and 3-manifolds

Research Project

Project/Area Number 11640065
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTokyo Institute of Technology

Principal Investigator

OHTSUKI Tomotada  Tokyo Institute of Techonology, Graduate School of Information Science and Engineering, Associate professor, 大学院・情報理工学研究科, 助教授 (50223871)

Co-Investigator(Kenkyū-buntansha) MURAKAMI Hitoshi  Tokyo Institute of Technology, Graduate School of Science and Engineering, Associate Professor, 大学院・理工学研究科, 助教授 (70192771)
Project Period (FY) 1999 – 2000
KeywordsKnot / 3-manifold / Quantum Invariant / Kontsevich Invariant / Vassiliev Invariant / Perturbative invariant / The LMO Invariant / Finite Type Invariant
Research Abstract

The author had studied quantum and related invariants of knots and 3-manifolds, such as the Kontsevich invariant, Vassiliev invariants, perturbative invariants, the LMO invariant, and finite type invariants. In this research the author obtained various results on such invariants and their relations. Further, he completed a preliminary version of his book written as an extensive exposition on this topic.

  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] T.Ohtsuki: "The perturbative SO(3) invariant of rational homology 3-spheres recovers from the universal perturbative invariant"Topology. 39. 1103-1135 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ohtsuki & H.Murakami: "Finite type invariants of knots via their Seifert matrices"Asian J.Math.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ohtsuki: "The perturbative So(3) invariant of rational homology 3-spheres recovers from the universal perturbative invariant"Topology. 39. 1130-1135 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ohtsuki,Le,H.Murakami & J.Murakami: "A three-manifold invariant via the Kntsevich integral"Osaka J.Math.. 36-2. 365-396 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Murakami & J.Murakami: "The colored Jones polynomials and the simplicial volume of a knot"Acta Math.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Murakami: "Hyperbolic three-manifolds with trivial finite type invariants"Kobe J.Math.. 16. 183-187 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大槻知忠,村上斉,村上順,諸氏と共著: "量子不変量-3次元トポロジーと数理物理の遭遇"日本評論社. 154 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] W.B.R.リコリッシュ著村上斉共同翻訳: "結び目理論概説"フェアラーク東京. 293 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ohtsuki: "How to construct ideal points of SL2(C) representation spaces of knot groups."Topology Appl.. 93. 131-159 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Le, H.Murakami, J.Murakami and T.Ohtsuki: "A three-manifold invariant via the Kontsevich integral"Osaka J.Math.. 39. 365-396 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ohtsuki: "The perturbativeSO(3) invariant of homology circles"Proceedings of the Conference on Low Dimensional Topology, Contemporary Math.. 233. 141-151 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ohtsuki: "The perturbative SO(3) invariant of rational homology 3-spheres recovers from the universal perturbative variant"Topology. 39. 1103-1135 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ohtsuki: "Finite type invarians of knots and 3-manifolds."Sugaku Expositions. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Murakami and T.Ohtsuki: "Finite type invariants of knots via their Seifert matrices"Asian J.Math.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Murakami: "Quantum SU(2)-invariants of three-manifolds associated with the trivial first cohomology class modulo two"Contemporary mathematics. 233. 117-136 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Murakami: "A weight system derived from the multivariable Conway potential function"J.London Math. Soc.. (2)59. 698-714 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Murakami: "Hyperbolic three-manifolds with trivial finite type invariants"Kobe J.Math.. 16. 183-187 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Murakami: "Quantum SU(2)-invariants for three-manifolds associated with non-trivial cohomology classes modulo two"Knots in Hellas 98, Proceedings of the International Conference on Knot Theory and its Ramificaitons, Series of Knots and Everything. 24. (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Murakami and A.Yasuhara: "Four-genus and four-dimensional clasp number of a knot"Proc. Amer. Math. Soc.. 128. 2693-3699 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Chumutov, V.Goryunov and H.Murakami: "Regular Legendrian knots and the HOMFLY polynomial of immersed plane curves"Math. Ann.. 317. 389-413 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Murakami and H.Murakami: "The colored Jones polynomials and the simplicial volume of a knot"Acta Math.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Murakami: "Kashaev's invariant and the volume of a hyperbolic knot"Proceedings of the International Workshoop 'Physics and Combinatorics, 1999, Nagoya'.

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi