• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Study of phantom maps

Research Project

Project/Area Number 11640089
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka Women's University

Principal Investigator

IRIYE Kouyemon  applied mathematics, Osaka Women's Universisity, Assistant Professor, 理学部, 助教授 (40151691)

Co-Investigator(Kenkyū-buntansha) ISHIHARA Kazuo  applied mathematics, Osaka Women's Universisity, Professor, 理学部, 教授 (90090563)
WATANABE Takashi  applied mathematics, Osaka Women's Universisity, Professor, 理学部, 教授 (20089957)
WATANABE Yutaka  applied mathematics, Osaka Women's Universisity, Professor, 理学部, 教授 (60028131)
YOSHITOMI Kentaro  applied mathematics, Osaka Women's Universisity, Lecturer, 理学部, 講師 (10305609)
WATAMORI Yoko  applied mathematics, Osaka Women's Universisity, Assistant Professor, 理学部, 助教授 (70240538)
Project Period (FY) 1999 – 2001
KeywordsPhantom maps / loop space / inverse limit / localigation
Research Abstract

In this reserach we studied phantom maps out of a single or iterated loop space Ω^kX of a simply connected finite complex X and related topics. We attacked the following problems raised by McGibbon in his survey paper.
(1) Let X be a simply connected finete complex which is not contractibel Is the universal phantom map out of the loop space Ω^κX essential?
(2) Does there exist a finite complex X and an essential phantom map from ΩX to a target of finite trpe?
(3) For a nilpotent group G we denot П_pG_(p) by G. Let {G_n} be an inverse sequence of finitely geneated nilpotent groups ans δ_* : lim__←^1G_n →lim__←^1G_n be the induced map between lim__←^1 sets. If lim__←^1G_n is nontrivial, does it follow that δ_*^-1(y) is an infinite set for each y in lim__←^1G_n?
As of the problem 1 we solved this problem except the case κ = 1. As of the problem 2 we obtained a negative answer when X is rationally elliptic or spaces are localized at a prime. As of problem 3 we obtained an affirmative answer.

  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] 入江幸右衛門: "Universal phantom maps out of loop spaces"Proceedings of the Royal Society of Edinburgh. 130A. 313-333 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 入江幸右衛門: "Rational equivalence and phantom map out of a loop space"Journal of mat hem atics of Kyoto University. 40. 775-788 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 入江幸右衛門: "The first derived functer of the inverse limit and escaligation"Journal of Pure and Applied Algebra. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 石原和夫: "Iterative methods for ceigenvalue problems・・・"Computing Supplementum. 15. 105-118 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 石原和夫: "Descent iterations for improving・・・"Computing. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Iriye K.: "The space of loops on a homogeneous space and rational equivalence"Bulletin of London Mathematical Society. Vol.31. 484-488 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Iriye K.: "Universal phantom mapos out of loop spaces"Prceedings of the Royal soceity of Edinburgh. Vol.130A. 313-333 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Iriye K.: "Rational equivalence and phantom map outo of a loop space"Journal of Mathematics of Kyoto University. Vol.40. 775-788 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Iriye K.: "The first derived functor of the inverse limit and localization"Journal of pure and applied algebra. (in press). (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Watanabe Y.: "Isometries of cubic forms on algebras"Mathematica Japonica. Vol.49. 207-212 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ishihara K. and Aizawa N.: "Newton-secant method for complex nonlinear equations with nondifferentiable terms"Matematica Japonica. v9l.49. 123-137 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ishihara K.: "Iterative methods for eigenvalue problems with nondifferentiable normalized condition of a general complex matrix"Computing Supplementum. Vol.15. 105-118 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ishihara K.: "Descent iterations for improving approximate eigenpairs of polynomial eigenvalue problems with general complex matrices"Computing. (in press). (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi