• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Study on arrangements of solid balls in 3-space

Research Project

Project/Area Number 11640129
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionUniversity of the Ryukyus

Principal Investigator

MAEHARA Hiroshi  Univ.of the Ryukyus, Faculty of Education, Professor, 教育学部, 教授 (60044921)

Co-Investigator(Kenkyū-buntansha) TOKUSHIGE Norihide  Univ.of the Ryukyus, Faculty of Education, Associate Professor, 教育学部, 助教授 (00217481)
MATSUMOTO Shuichi  Univ.of the Ryukyus, Faculty of Education, Professor, 教育学部, 教授 (20145519)
KATO Mitsuo  Univ.of the Ryukyus, Faculty of Education, Professor, 教育学部, 教授 (50045043)
Project Period (FY) 1999 – 2000
Keywordsarrangement of balls / knotted necklace / piercing balls / almost halving-plane / representation of a graph
Research Abstract

1. A cyclic sequence of nonoverlapping unit balls in R^3 in which each consecutive balls are tangent, is called a necklace of pearls. We show that to make a knotted necklace of pearls, 15 unit balls are sufficient. To make a knotted necklace that can be inscribed between a pair of parallel planes with distance 2+√<2> apart, 16 unit balls are necessary, and the trefoil is the unique knot that can be made by 16 unit balls.
2. A chain is a finite sequence of balls in which each consecutive pair of balls are tangent. Make a graph by representing vertices by balls, and edges by chains connecting two vertex-balls. Let b_n be the minimum number of balls necessary to make a complete graph of n vertices. Then we got the bound c_1n^3<b_n<c_2n^3 log n. A similar bound is also obtained when we use balls all sitting on a fixed table.
3. For a family F of balls in d-dimensional space R^d, let λ= λ(F)=(the max. radius) / (the min. radius). We proved that for any family of n balls in R^d, there is a direction such that any line with this direction intersects at most O (√<(1+logλ)n log n>) balls. On the otherhand, for n【greater than or equal】d, there is a family of nonoverlapping n balls in R^d such that for any direction, there is a line with this direction that intersects at least n-d+1 balls. For a family of balls sitting on a fixed table in R^3, we also got an upper bound of the average number of balls pierced by a vertical line meeting the table.
4. If a family of nonoverlapping balls in R^3 satisfies that logλ=o ((n/log n)^<1/3>), then there is a plane both sides of which contain n/2-o (n) intact balls.

  • Research Products

    (40 results)

All Other

All Publications (40 results)

  • [Publications] A.Kaneko: "On the number of acute triangles in a straight-line…"Journal of Combinatorial Theory B. 75. 110-115 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Maehara: "Lexell's theorem via an insaibed angle theorem"American Mathematical Monthly. 106. 352-353 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Maehara : "On knotled necklaces of pearls"Europeam Journal of combinatorics. 20. 411-420 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Machara : "Geometry of frameworks"Yokohama Mathematical Journal. 47. 41-65 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Maehara: "Configuration spaces of pentagonal frameworks"European Journal of Combinatorics. 20. 839-844 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Maehara: "Arranging solid balls on table to make a k-component link"Ryukyu Mathematical Journal. 12. 31-35 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Maehara: "On Soddy's hexlet and a linked 4-pair"Proc.JCDCG'98 Springer. 188-193 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.V.Gevoacio : "Subdioiding a graph toward a unit-distance graph in the plane"European Journal of Combinatorics. 21. 223-229 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Maehara: "Can convex polyhedron have a developable face-cycle?"Theoretical Computer Science. 235. 267-240 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Maehara: "Cutting a set of disks by a line with leaving many intact…"Journal of Cominatorial Theory A. 90. 235-240 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Maehara: "On knotted necklaces of pearls and Simon's energies"Yokohama Mathematical Journal. 47. 177-185 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Maehara : "Piercing balls sitting on a table by a vertical line"European Journal of Combinatorics. 21. 509-519 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Ifoh: "Oriented graphs generated by random points on a circle "Journal of Applied Probability. 37. 534-539 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Maehara : "On the waiting time in a Janken game"Journal of Applied Probability. 37. 601-605 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Maehara: "On families of nonoverlapping balls"Ryukyu a Mathematical Journal. 13. 47-59 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kato: "A simple pfaffian form representing the hypergeometric…"Kyushu Journal of Mathematics. 54. 219-224 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kato: "Appel's hypergeometric systems F_2 with finite irreducible…"Kyushu Journal of Mathematics. 54. 279-305 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Kudaka: "Uncertainity principle for proper time and mass"Journal of Mathematical Physics. 40. 1237-1245 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Matsumoto: "Proper time as an operator"Ryukyu Mathematical Journal. 12. 37-51 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] P.Frankl: "Erdos-Ko-Rado theorem for integer sequence"Combinatorica. 19. 55-63 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Kaneko, H.Maehara and M.Watanabe: "On the number of acute triangles in a straight-line embedding of a maximal planar graph"J.Combin.Th.B. 75. 110-115 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Maehara: "Lexell's theorem via an inscribed angle theorem"Amer.Math.Monthly. 106. 352-353 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Maehara and A.Oshiro: "On knotted necklaces of pearls"Europ.J.Combin.. 20. 411-420 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Maehara: "Geometry of frameworks"Yokohama Math.J.. 47. 41-65 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Maehara: "Configuration spaces of pentagonal frameworks"Europ.J.Combin.. 20. 839-844 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Maehara and H.Noha: "Arranging solid balls on a table to make a k-component link"Ryukyu Math.J.. 12. 31-35 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Maehara and A.Oshiro: "On Soddy's hexlet and a linked 4-pair"Proc.JCDCG'98, Springer. 188-193 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.V.Gervacio and H.Maehara: "Subdividing a graph toward a unit-distance graph in the plane"Europ.J.Combin. 21. 223-229 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Maehara: "Can a convex polyhedron have a developable face-cycle?"Theoretical Computer Science. 235. 267-240 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Maehara and A.Oshiro: "Cutting a set of disks by a line with leaving many intact disks in both sides"J.Combin.Th.A. 90. 235-240 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Maehara and A.Oshiro: "On knotted neclaces of pearls and Simon's energies"Yokohama Math.J.. 47. 177-185 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Maehara and A.Oshiro: "Piercing balls sitting on a table by a vertical line"Europ.J.Combin.. 21. 509-517 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Itoh, H.Maehara and N.Tokushige: "Oriented graphs generated by random points on a circle"J.Appl.Prob.. 37. 534-539 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Maehara and S.Ueda: "On the waiting time in a janken game"J.Appl.Prob.. 37. 601-605 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Maehara: "On families of nonoverlapping balls"Ryukyu Math.J.. 13. 47-59 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kato: "A simple pffaffian form representing the hypergeometric differenial equation of type (3,6)"Kyushu J.Math.. 54. 219-224 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kato: "Appel's hypergeometric systems F_2 with finite irreducible monodromy groups"Kyushu J.Math.. 54. 279-305 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Kudaka and S.Matsumoto: "Uncertainity principle for proper time and mass"J.Math.Physics. 40. 1237-1245 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Matsumoto: "Proper time as an operator"Ryukyu Math.J.. 12. 37-51 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] P.Frankl and N.Tokushige: "Erdos-Ko-Rado theorem for integer sequence"Combinatorica. 19. 55-63 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi