• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

A Study of graph decomposition problems

Research Project

Project/Area Number 11640136
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKOGAKUIN UNIVERSITY

Principal Investigator

KANEKO Atsushi  KOGAKUIN UNIVERSITY, Dept.of Computer Science and Comunication Engineering, associate professor, 工学部, 助教授 (30255608)

Project Period (FY) 1999 – 2000
KeywordsGraph Theory / Combinatorics / Discrete Geometry
Research Abstract

We prove the following theorem : Let $m$ be a positive integer, and let $T_1, \cdots, T_q$ be $q$ disjoint rooted trees such that $|T_ i| \in \ {m, m+1\} $ and $v_i$ is the root of $T_i$ for all $ 1\leq i\leq q$. Let $P$ be a set of $|T_1|+ \cdots +|T_q|$ points in the plane in general position that contains $q$ specified points $p_1, \cdots, p_q $. Then the rooted forest $ T_1 \cup \cdots \cup T_q$ with roots $v_1, \cdots, v_q$ can be straight-line embedded onto $P$ so that each $v_i$ corresponds to $p_i$ for every $1 \le i \le q$.
In order to prove the theorem above, we prove the next theorem :
Let $m$ be a positive integer and let $S_1$, $ S_2$ and $T$ be three disjoint sets of points in the plane such that no three points of $S_1 \cup S_2 \cup T$ lie on the same lineand $|T|=(m-l)|S_1|+ m|S_2|$. Put $q=|S_1 \cup S_2|$.
Then $S_1 \cup S_2 \cup T$ can be partitioned into $q$ disjoint subsets $P_1, \cdots, P_q$ satisfying the following three conditions :
(i) ${\rm \mbox {conv}} \, (P_i) \cap {\rm \mbox {conv}} \, (P_j)= \emptyset $ for all $1 \leq i<j \leq q$ ;
(ii) S|P_i \cap (S_1 \cup S_2) |=l$ for all $1 \leq i \leq q$ ; and
(iii) $|P_i \cap T|=m-1$ if $|P_i \cap S_1|=1$, and $|P_i \cap T|=m$ if $|P_i \cap S_2|=-1$.
This partition is called a semi-balanced partition.
Our proof gives an $0 (n^4) $ time algorithm for finding the above straight-line embedding of the rooted forest $ T_1\cup \cdots \cup T_q$ of order $n=|T_1|+ \cdots +|T_q|$.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] A.Kaneko,M.Kano: "Straight line embeddings of rooted star forest in the plane"Discrete Applied Mathematics. 101. 167-175 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Kaneko,K.Yoshimoto: "On spanning trees with restricted degrees"Information Processing Letters. 73. 163-165 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Kaneko,M.Kano,K.Yoshimoto: "Alternating hamilton cycles with minimum number of crossings in the plane"International Journal of Computational Geometry & Applications. 10・1. 73-78 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Kaneko: "On the maximum degree of bipartite embedings of tree in the plane"Lecture Notes in Computer Science. 1763. 166-171 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Ando,A.Kaneko,K.Kawarabayashi: "Contractive edges in k-connected graphs containing no K_4^-"SUT Journal of Mathematics. 36,1. 99-103 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Kaneko,K.Ota: "On minimally (n,λ)-connected graphs"Journal of Combinatorial Theory Ser.B. 80. 156-171 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Kaneko, M.Kano: "Straight line embedings of rooted stor forest in the plane"Discrete Applied Mathematics. 101. 167-175 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Kaneko, K.Yoshimoto: "On spanning trees with restricted degrees"Information Processing Letters. 73. 163-165 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Kaneko, M.Kano, K.Yoshimoto: "Alternating hamilton cycles with minimum number of crossings in the plane"International Journal of Computational Geometry & Applications. 10 1. 73-78 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Kaneko: "On the maximum degree of bipartite embedings of tree in the plane"Lecture Notes in Computer Science. 1763. 166-171 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Ando, A.Kaneko, K.Kawarabayashi: "Contractive edges in k-connected graphs containing no K^-"SUT Journal of Mathematics. 36, 1. 99-103

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Kaneko, K.Ota: "On minimally (n, λ)-connected graphs"Journal of Combinatorial Theory Ser.B. 80. 156-171 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi