• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Research of Norm Inequalities on Matices Algebra

Research Project

Project/Area Number 11640146
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionHOKKAIDO UNIVERSITY OF EDUCATION

Principal Investigator

OKUBO Kazuyoshi  Hokkaido Univ.of Education, 教育学部・札幌校, 教授 (80113661)

Co-Investigator(Kenkyū-buntansha) NISHIMURA Junichi  Hokkaido Univ.of Education, 教育学部・札幌校, 助教授 (00025488)
OSADA Masayuki  Hokkaido Univ.of Education, 教育学部・札幌校, 教授 (10107229)
SAKURADA Kuninori  Hokkaido Univ.of Education, 教育学部・札幌校, 教授 (30002463)
KOMURO Naoto  Hokkaido Univ.of Education, 教育学部・旭川校, 助教授 (30195862)
HASEGAWA Izumi  Hokkaido Univ.of Education, 教育学部・旭川校, 教授 (50002473)
Project Period (FY) 1999 – 2000
KeywordsTrace / Numerical range / Numerical radius / Spectrum / Square root of matrix / rank reducing / Approximant
Research Abstract

Let M_n be the algebra of all n×n complex matrices. The spectral norm, which is the operator norm of linear operator on C^n, is the one of the important norms on C^n. Another important norm is the numerical radius in M_n, which is of measurement of magnitude of a particle in quantum mechanics. The operator radius ω_ρ ( )(ρ>0) were defined by J.A.R.Holbrook. These radius interpolate among the spectral norm, the numerical radius and the spectral radius. We give an explicit description of all matrices A∈M_2 such that ω_ρ(A)【less than or equal】1. This description leads to the formulas for ρ-radii when the eigenvalues of such matrices either have equal absolute values or (mod π) argument.
Trace inequalities for multiple products of powers of two matrices are discussed via the method of log majorization. For instance, the trace inequality
|Tr (A^<p1>B^<q1>A^<p2>B^<q2>…A^<pK>B^<qK>|【less than or equal】Tr (AB)
is obtained for positive semidefinite matrices A, B and p_i, q_i【greater than or equal】0 with p1+…+pK=q1+…+qK=1 under some additional condition.
For A∈M_n (C), let W (A) denote the numerical range of A.It is shown that if W (A)∩(-∞, 0)=φ, then A has a unique square root B∈M_n (C) with W (B) in the closed right half plane.

  • Research Products

    (18 results)

All Other

All Publications (18 results)

  • [Publications] 大久保和義(共著安藤毅,日合文雄): "Trace inequalities for multiple products of two matrices"Mathematical Inequalities & Applications. 3. 307-318 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 長谷川和泉(共著 山内一也): "Infinitesimal projective transformations on contact Riemannian maniforlds"Journal of Hokkaido University of Education. 51. 1-7 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小室直人(共著 超昭三): "Supsets on partially orderd topological linear spaces"Taiwanese Journal of Mathematics. 4. 275-284 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小室直人: "Properties on the set of upper bounds in partialy ordesrd linear space"Journal of Hokkaido University of Education. 51. 15-20 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大久保和義(共著C.R.Johnson,R.Reams): "Uniquness of matrix square roots and applications"Linear Algebra and its Applications. 323. 51-60 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大久保和義(共著I.Spitkovsky): "On the characterization of 2×2 ρ-contraction matrices"Linear Algebra and its Applications. 325. 177-189 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 長谷川和泉: "Infinitesimal projective transformations on tangent bundle with the horigontal lift connection"Journal of Hokkaido University of Education. (To appear). (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大久保和義(共著C.R.Johnson): "Uniquness of matrix square roots under the some numerical range condition"Linear Algebra and its Applications. (To appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nakazi and K.Okubo: "Generalized numerical radius and unitary p-dilation"Math.Japonica. 50. 347-354 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Komuro and H.Okumura: "Generalized supremum in partially ordered linear space and monotone order completeness"Journal of Hokkaido University of Education. 50. 11-16 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I.Hasegawa and K.Yamauchi: "Infinitesimal projective transformations on contact Riemannian manifolds"Journal of Hokkaido University of Education. 51. 1-7 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ando, F.Hiai and K.Okubo: "Trace inequalities for multiple products of two matrices"Mathematical Inequalities & Applications. 3. 307-318 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Komuro and S.Koshi: "Supsets on partially ordered topological linear spaces"Taiwanese Journal of Mathematics. 4. 275-284 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Komuro: "Properties on the set of upper bounds in partially ordered linear space"Journal of Hokkaido University of Education. 5. 15-20 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] C.R.Johnson, K.OKubo and R.Reams: "Uniqueness of matrix square roots and applications"Linear Algebra and its Applications. 323. 51-60 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Okubo and I.Spitkovsky: "On the characterization of 2x2 p-contraction matrices"Linear Algebra and its Applications. 325. 177-189 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I.Hasegawa: "Infinitesimal projective transformations on tangent bundle with the horizontal lift connection"Journal of Hokkaido University of Education. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] C.R.Johnson and K.Okubo: "Uniqueness of matrix square roots under a numerical range condition"Linear Algebra and its Applications. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi