• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Almost orthogonality in harmonic analysis and its application

Research Project

Project/Area Number 11640149
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionTohoku University

Principal Investigator

TACHIZAWA Kazuya  Faculty of Science, Tohoku University, Lecturer, 大学院・理学研究科, 講師 (80227090)

Co-Investigator(Kenkyū-buntansha) HORIHATA Kazuhiro  Fucalty of Science, Tohoku University, Research assistant, 大学院・理学研究科, 助手 (10229239)
Project Period (FY) 1999 – 2000
Keywordswavelet / pseudodifferential operators / Schrodinger operator / eigenvalues / harmonic map
Research Abstract

In this project we studied the analysis of several operators by means of functions which are localized in phase space. First, we got a generalization of Calderon-Vaillancourt's theorem about the L^2 boundedness of pseudodifferential operators by means of Gabor frames. Second, we proved the descrete dyadic Carleson's inequality by using Bellman function method. As an application we gave alternate proofs of weighted norm inequalities for fractional maximal operators and fractional integral operators, Third, we got a generalization of Lieb-Thirring inequality about the moments of negative eigenvalues of the Schrodinger operator with negative potential. We used Frazier-Jawerth's ψ-transform. Our result is applicable to higher order degenerate elliptic partial differential operators. We expect that our result has an application to the problem of the stability of matter and the estimate of the Hausdorff dimension of the attractor of nonlinear equations. Four, we investigated the structure of regularity and the singular set of the weak solution of the nonlinear heat equaltion associated with a harmonic map from d-dimensional unitball B_1 (0) to (D+1)-dimensional Euclidean space. We showed that the minimizer of the harmonic map is smooth except closed set of at most (d-3)-Hausdorff dimension.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] Kazuya Tachizawa: "A generalization of Calderon-Vaillancourt's theorem"京都大学数理解析研究所講究録. 1102. 64-75 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kazuya Tachizawa: "On weighted dyadic Carleson's inequalities"Journal of Inequalities and Applications. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 堀畑和弘: "Nonlinear Fefferman-Phangの不等式とGinzburg-landau systemへの応用"京都大学数理解析研究所講究録. 1162. 91-98 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kazuhiro Horihata: "The evolution of harmonic maps"Tohoku Mathematical Publications. 11. 1-111 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kazuya Tachizawa: "A generalization of Calderon-Vaillancourts's theorem"Suurikaiseki kenkyuujyo kokyuroku. 1102. 64-75 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuya Tachizawa: "On weighted dyadic Carleson's inequalities"Journal of Inequalities and Applications. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuhiro Horihata: "Nonlinear Fefferman-Phong's inequality and its application to Ginzburg-Landau system"Suurikaiseki kenkyuujyo kokyuroku. 1162. 91-98 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazhiro Horihata: "The evolution of harmonic maps"Tohoku Mathematical Publications. 11. 1-111 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi