• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Potential theory in a domain with fractal boundary

Research Project

Project/Area Number 11640154
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOchanomizu University

Principal Investigator

WATANABE Hisako  Ochanomizu Univ., Graduate School of Humanities and Sciences, Professor, 大学院・人間文化研究科, 教授 (70017193)

Co-Investigator(Kenkyū-buntansha) MAEDA Michie  Ochanomizu University, Faculty of Sciences, Professor, 理学部, 教授 (30017206)
MATSUZAKI Katsuhiko  Ochanomizu University, Faculty of Sciences, Assistant Professor, 理学部, 助教授 (80222298)
TAKEO Fukiko  Ochanomizu University, Faculty of Sciences, Professor, 理学部, 教授 (40109228)
YOSHIDA Hidenobu  Chiba Univ. Graduate School of Natural Sciences, Professor, 大学院・自然科学研究科, 教授 (60009280)
Project Period (FY) 1999 – 2001
Keywordsfractal boundary / double layer potentials / Whitney decomposition / Besov spaces / Besov norms / maximal functions / uniform domains / boundedness of operators
Research Abstract

We consider the boundary-value problems in a domain D with fractal boundary. It often occurs that an operator K on the Besov space on the boundary is bounded with respect to the Besov norms. We can prove the boundedness of an operator from δD to δD in the following method.
(1) We extend a function defined on δD to R^n by using an extension operator E.
(2) The Besov norm of f is estimated by (∫_D |▽f(x)|^<Pλ>dx)^<1/P>, where δ(x) is the distance from x to δD.
(3) Instead of the boundedness of K we prove the boundedness of an operator F from D to the outside of D with respect to suitable norms by using the maximal functions between D and the outside of D.
We proved the boundedness of an operator K, which is important to solve the Dirichlet problem by using double layer potentials.

  • Research Products

    (17 results)

All Other

All Publications (17 results)

  • [Publications] H.Watanabe: "Besov spaces on fractal sets"Josai Math. Monographs. 1. 121-134 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Watanabe: "Boundary behavior of double layer potentials with fractal boundary"Natur Sci. Rep. Ochanomizu Univ.. 50,2. 1-10 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Watanabe: "Uniqueness of double layer potentials for a domain with fractal boundary"Hiroshima Math. J.. 30. 55-77 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Watanabe: "Estimates of the Besov norms on fractal boundary by volume integrals"Natur. Sci. Rep. Ochanomizu Univ. 51,1. 1-10 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Yoshida, I.Miyamoto: "Harmonic functions in a cone which vanish on the boundary"Math. Nachr. 202. 177-187 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Yoshida, I.Miyamoto: "Harmonic functions in a cylinder with the normal derivatives vanishing on the boundary"Ann. olon. Math.. 74. 229-235 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. Watanabe: "Besov spaces on fractal sets"Josai Math. Monographs. 1. 121-134 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Watanabe: "boundedness of operators on Besov spaces on a fractal set"数理解析研究講究録1116. 165-180 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Watanabe: "Boundary behavior of double layer potentials with fractal boundary"Natur Sci. Rep. Ochanomizu Univ.. 50,2. 1-10 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Watanabe: "Uniqueness of double layer potentials for a domain with fractal boundary"Hiroshima Math. J.. 30. 55-77 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Watanabe: "Estimates of the Besov norms on fractal boundary by volume integrals"Natur. Sci. Rep. Ochanomizu Univ.. 51. 1 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Watanabe: "Estimates of the Besov norms on fractal lateral boundary by volume integrals"Natur. Sci. Rep. Ochanomizu Univ.. 52(to appear). 1 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Yoshida and I. Miyamoto: "Harmonic functions in a cone which vanish on the boundary"Math. Nachr.. 202. 177-187 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Yoshida and I. Miyamoto: "Harmonic functions in a cylinder with the normal derivatives vanishing on the boundary"R.I.M. Kokyuroku. 1116. 34-44 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Yoshida and I. Miyamoto: "Harmonic functions in a cylinder with the normal derivatives vanishing on the boundary"Ann. Polon. Math.. 74. 229-2235 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Yoshida and I. Miyamoto: "Two criterions of Wiener type for minimally thin sets and rarefied sets in a cone"J. Math. Soc. Japan. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Yoshida, I. Miyamoto and M. Yanagisita: "Beuring-Dahlberg-Sj\"{o}gren type theorems for minimally thin sets in a cone"Canad. Math. Bull. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi