• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

TEICHMULLER SPACES AND GEOMETRY OF MOBIUS TRANSFORMATIONS

Research Project

Project/Area Number 11640162
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionSHIZUOKA UNIVERSITY

Principal Investigator

OKUMURA Yoshihide  Shizuoka University, Faculty of Science, Associate Professor, 理学部, 助教授 (90214080)

Co-Investigator(Kenkyū-buntansha) AKUTAGAWA Kazuo  Shizuoka University, Faculty of Science, Associate Professor, 理学部, 助教授 (80192920)
NAKANISHI Toshihiro  Nagoya University, Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (00172354)
SATO Hiroki  Shizuoka University, Faculty of Science, Professor, 理学部, 教授 (40022222)
KUMURA Hisanori  Shizuoka University, Faculty of Science, Full-Time Lecturer, 理学部, 講師 (30283336)
Project Period (FY) 1999 – 2000
KeywordsTeichmuller space / discrete group / Riemann surface / simple dividing loop / Teichmuller modular group / Mobius transformation / byperbolic manifold / real analytic manifold
Research Abstract

My research during this term consists mainly of the following three branches :
1. Consideration of the relation between angle parameters and the geometry of Mobius transformations.
2. Representation of the Teichmuller modular groups (the mapping class groups) by angle parameters.
3. Characterization of simple dividing loops on Riemann surfaces analytically.
In order to obtain global real analytic and simple representations of the Teichmuller spaces, I introduced new angle parameters. I showed that the Theichmuller spaces are described by only angle parameters and it is easy to analyze such angle parameter spaces of the typical Teichmuller spaces.
Considering the axes of the generators and these products of Fuchsian groups, for example the once-holed torus Fuchsian groups, I found out the high symmetry of the arrangement of these axes. I investigated the relation among such geometry of Mobius transformations, traces and angle parameters, using the one-half powers of Mobius transformations an … More d the hyperbolic geometry. From these observations, the much relation and information of angle parameters were obtained. From such information of angle parameters, I tried to represent the Teichmuller modular groups by only angle parameters. I considered the following :
(1) Relation between angle parameters and length parameters representing these groups.
(2) Concrete description of such groups by only angle parameters in the cases that it is easy to calculate.
(3) Choice of angle parameters (inductively) that simply represent the Theichmuller modular groups of the general cases.
I especially studied the representation of the Theichmuller modular groups of a once-holed torus and a compact Riemann surface of genus 2.
Furthermore, I gave the necessary and sufficient condition of a simple loop L on a Riemann surface S to be dividing, using the lifts of a Fuchsian group G representing S to the special linear group SL (2, C). For example, if S is a compact Riemann surface of genus p (>1), then the following is obtained :
The number of the lifts of G is 2 to the 2p-th power. Let g be an element of G corresponding to L.Then L is to be dividing if and only if for any lift of G, the matrix corresponding to g always has the negative trace. Less

  • Research Products

    (18 results)

All Other

All Publications (18 results)

  • [Publications] Yoshihide Okumura: "Lifting problem and its application to Riemann surfaces"Eighth International Conference on Complex Analysis. (印刷中). (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 奥村善英: "タイヒミュラー空間の角度変数とその応用"京都大学数理解析研究所講究録. (印刷中). (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 奥村善英: "リーマン面上の単純閉曲線が分割曲線になるための必要十分条件"京都大学数理解析研究所講究録. 1163. 28-41 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroki Sato: "Jorgensen's inequality for classical Schottky groups of real type, II"J.Math.Soc.Japan. 53(印刷中). (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Toshihiro Nakanishi: "Areas of two-dimensional moduli spaces"Proc.Amer.Math.Soc.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Reiko Aiyama: "The Dirichlet problem at infinity for harmonic map equations arising from constant mean curvature surfaces in the hyperbolic 3-space"Calc.Var.Partial Differential Equations. (印刷中). (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hironori Kumura: "A note on the absence of eigenvalues on negatively curved manifolds"Kyushu J.Math.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshihide Okumura: "Lifting problem and its application to Riemann surfaces"Eighth International Conference on Complex Analysis. (to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihide Okumura: "Angle parameters for Teichmuller spaces and its application"RIMS Kokyuroku, Research Institute for Mathematical Sciences Kyoto Univ. (to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihide Okumura: "Part A The pants decomposition : Finding a handle"The Report of GKM Seminar at Shizuoka. (to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihide Okumura: "The necessary and sufficient condition for simple loops on Riemann surfaces to be dividing"RIMS Kokyuroku 1163, Research Institute for Mathematical Sciences Kyoto Univ.. 28-41 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroki Sato: "Jorgensen's inequality for classical Schottky groups of real type II"J.Math.Soc.Japan. Vol.53(to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroki Sato: "One-parameter families of extreme discrete groups for Jorgensen's inequality"Contemporary Math. (The First Ahlfors-Bers Colloquium). Vol.256. 271-287 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toshihiro Nakanishi and M.Naatanen: "Areas of two-dimensional moduli spaces"Proc.Amer.Math.Soc. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toshihiro Nakanishi, M.Naatanen and G.Rosenberger: "Arithmetic Fuchsian groups of signature (0 ; e_1, e_2, e_3, e_4) with 2≦e_1≦e_2≦e_3, e_4=∞"Complex Geometry of Groups (edited by A.Carocca et al), Contemporary Mathematics. Vol.240. 269-277 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Reiko Aiyama and Kazuo Akutagawa: "The Dirichlet problem at infinity for harmonic map equations arising from constant mean curvature surfaces in the hyperbolic 3-space"Calc.Var.Partial Differential Equations. (to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Reiko Aiyama and Kazuo Akutagawa: "Kenmotsu type representation formulas for surfaces with prescribed mean curvature in the hyperbolic 3-space"J.Math.Soc.Japan. Vol.52. 877-898 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hironori Kumura: "A note on the absence of eigenvalues on negatively curved manifolds"Kyushu J.Math. (to appear ).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi