• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Applied Functional Analysis related to Mathematical Information Theory

Research Project

Project/Area Number 11640169
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionYAMAGUCHI UNIVERSITY

Principal Investigator

YANAGI Kenjiro  Yamaguchi University, Faculty of Engineering, Professor, 工学部, 教授 (90108267)

Co-Investigator(Kenkyū-buntansha) KASHIWAGI Takao  Yamaguchi University, Faculty of Engineering, Professor, 工学部, 教授 (80035162)
KURIYAMA Ken  Yamaguchi University, Faculty of Engineering, Professor, 工学部, 教授 (10116717)
MATSUNO Yohsimasa  Yamaguchi University, Faculty of Engineering, Professor, 工学部, 教授 (30190490)
YANAGIHARA Hiroshi  Yamaguchi University, Faculty of Engineering, Associate Professor, 工学部, 助教授 (30200538)
OKADA Mari  Yamaguchi University, Faculty of Engineering, Associate Professor, 工学部, 助教授 (40201389)
Project Period (FY) 1999 – 2000
KeywordsInformation Theory / Gaussian Channel / Capacity / Feedback / Gaussian Noise / Upper Bound / Avcrage Power Constraint / Shannaon Theory
Research Abstract

The mathematical information theory was originally founded by C.E.Shannon in 1948. Since then, it has developed the mathematical foundations to make the communication systems certain. In this research we have four results on the finite block length capacity of discrete time Gaussian channels with feedback.
1. We proved the concavity of feedback capacity C_<n, FB,Z>( ). That is,
C_<n, FB,Z>(αP_1+βP_2)【greater than or equal】αC_<n, FB,Z>(P_1)+βC_<n, FB,Z>(P_2).
2. We gave the useful upper bound to blockwise white feedback capacity C_<n, FB,Z>(P) when the power constraint P is relatively large. That is, for any P>P_0={mr_m-(r_1+r_2+…+r_m)}/n,
C_<n, FB,Z>(P)【less than or equal】(C_<n, Z>(P))/(P_0)P,
C_<n, FB,Z>(P)【less than or equal】C_<n, Z>(P_0)+1/2logP/(P_0).
3. We gave the operator convexity of log(1+t^<-1>). As its application we proved the convexity of nonfeedback capacity C_n, .(P). That is,
C_<n, Z>(P)【less than or equal】αC_<n, Z_1>(P)+βC_<n, Z_2>(P).
4. We proved the convex-likeness of feedback capacity C_<n, FB,>.(P). That is, there exist P_1, P_2【greater than or equal】0(P=αP_1+βP_2) such that
C_<n, FB,Z>(P)【less than or equal】αC_<n, FB,Z_1>(P_1)+βC_<n, FB,Z_2>(P_2).
In future we will try to prove the convexity of feedback capacity.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Han Wu Chen: "Refinements of the half-bit and factor-of-two bounds for capacity in Gaussian channel with feedback"IEEE Trans. Information Theory. IT-45/1. 319-325 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 陳漢武: "ガウス型通信路容量に関する不等式"京都大学数理解析研究所講究録. 1100. 117-130 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kenjiro Yanagi: "On some properties of capacity in Gaussian channels with feedback"Proceedings of the China and Japan Joint Symposium on Applied Mathematics and its Related Topics. 58-67 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Han Wu Chen: "Upper bounds on the capacity of discrete-time blockwise white Gaussian channels with feedback"IEEE Trans. Information Theory. IT-46/3. 1125-1131 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kenjiro Yanagi: "Operator inequality and its application to capacity of Gaussian channel"Taiwanese J.Math.. 4/3. 407-416 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Han Wu Chen: "Properties of capacity in Gaussian channels with or without feedback"Proceedings on International Symposium on Information Theory and its Applications. 689-692 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Han Wu Chen: "Refinements of the half-bit and factor-of-two bounds for capacity in Gaussian channel with feedback"IEEE Trans.Information Theory. vol.IT-45, no.1. 319-325 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Han Wu Chen: "Inequality related to capacity of Gaussian channel (in Japanese)"Lecture Notes in RIMS, Kyoto University (Kokyuroku). vol.1100. 117-130 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kenjiro Yanagi: "On some properties of capacity in Gaussian channels with feedback"Proceedings of the China and Japan Joint Symposium on Applied Mathematics and its Related Topics. 58-67 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Han Wu Chen: "Upper bounds on the capacity of discrete-time blockwise white Gaussian channels with feedback"IEEE Trans.Information Theory. vol.IT-46, no.3. 1125-1131 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kenjiro Yanagi: "Operator inequality and its application to capacity of Gaussian channel"Taiwanese J.Math.. vol.4, no.3. 407-416 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Han Wu Chen: "Properties of capacity in Gaussian channels with or without feedback"Proceedings on International Symposium on Information Theory and its Applications. 689-692 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi