2000 Fiscal Year Annual Research Report
Project/Area Number |
11640171
|
Research Institution | Nanzan University |
Principal Investigator |
國田 寛 南山大学, 数理情報学部, 教授 (30022552)
|
Co-Investigator(Kenkyū-buntansha) |
谷口 説男 九州大学, 大学院・数理学研究科, 助教授 (70155208)
|
Keywords | 確率微分方程式 / 加法過程 / マリアバン解析 / 準だ円性 |
Research Abstract |
本年度は飛躍のある確率微分方程式に重点をおいて研究し、解の分布がルベーグ測度に関して(滑らかな)密度関数を持つかどうかを調べた。方程式としては、有限個のベクトル場とその個数と同じ次元を持つ加法過程で生成される標準型確率微分方程式を取り上げた。まずベクトル場及び加法過程が共に非退化である場合に、方程式の解の分布は滑らかな密度関数を持つことを示した。次にベクトル場が退化している場合でも、そのベクトル場から生成されるリー代数がHormanderの準楕円性条件を満たせば、解の分布は密度関数を持つことを示した。これらの結果は、ベクトル場とブラウン運動で生成される確率微分方程式に関して、Malliavin,Kusuoka-Stroock達が1980年代初期に得た結果を、飛躍のある方程式へ拡張したものである。 証明にはWiener空間上のMalliavin解析を、Wiener空間とPoisson空間の直積空間上に拡張する必要がある。報告者は、Picardが展開したPoisson空間上のMalliavin解析とWiener空間上のMalliavin解析を結合して、直積空間上の確率変数の分布が滑らかな密度関数を持つための判定条件を得た。結果はWiener空間上のMalliavinの判定条件(Malliavin共分散が可逆且つ行列式の逆数がp乗可積分)及びPoisson空間上のPicardの判定条件を含んでいる。その判定条件を飛躍のある確率微分方程式の解に応用することによって、解の分布の密度関数の存在を示した。
|
Research Products
(5 results)
-
[Publications] Hinoshi Kunita: "Canonical SDE's based on semimantingales with spatial parameters, Part I, Stochastic flows of diffeomorphisms"Kyushu Jounal of Mathematics. 53・2. 265-300 (1999)
-
[Publications] Hiroshi Kunita: "Canonical SDE's based on semimartingales with spatial parameters, Part II, Inverse flows and backward SDE's"Kyushu Jounal of Mathematic. 53-2. 301-331 (1999)
-
[Publications] Hiroshi Kunita: "Invariant measures for Levy flows of diffeomorphisms"Proceedings of the Royal Society of Edinburgh. 130A. 925-946 (2000)
-
[Publications] Setsuo Taniguchi: "Levy's stochastic area and the principle of stationany phase"Journal of Functional Analysis. 172. 165-176 (2000)
-
[Publications] Setsuo Taniguchi: "Analytic functions on abstract Wienen spaces"Joannal of Functional Analysis. (印刷中).