• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Applications of Besov spaces and Sobolev spaces to non-linear problems in mathematical physics

Research Project

Project/Area Number 11640184
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionCHUO UNIVERSITY

Principal Investigator

MURAMATU Tosinobu  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (60027365)

Co-Investigator(Kenkyū-buntansha) YAMAMOTO Makoto  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (10158305)
MATSUYAMA Yoshio  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (70112753)
IWANO Masahiro  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (70087013)
YOSHINO Masafumi  Chuo University, Faculty of Economics, Professor, 経済学部, 教授 (00145658)
MITSUMATU Yoshihiko  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (70190725)
Project Period (FY) 1999 – 2000
Keywordsnon-linear problem / Besov spaces / parabolic evolution equation / E E of hyperbolic type / operational calculus / non-linear Schrodinger equation
Research Abstract

We investigated first precise linear theories which are bases of study on non-linear problems, then applied them to non-linear problems.
1. Study on parabolic evolution equations in Banach spaces
We have constructed a theory which extensively improved H.Tanabe's clsssical one. We replaced Holder continuity with modulus of continuity. We also proved solvability of the initial value problem with initial data in Besov spaces of order 0. This is the best assumption on initial data, which enable us to get better results on non-linear problems.
2. Study on evolution equations of hyperbolic type in Banach spaces.
We have reformed Tosio Kato's theory. By our result we can directly apply the abstract theory to regularly hyperbolic equations, which is useful in study on non-linear problems.
3. Operational calculus of non-negative operators
This is a generalization on fractional powers of non-netative operators, which are very useful tools in study of Navier-Stokes equations.
4. Applicatons of Besov type norms to non-linear partial differential eqations
We studied non-linear Schrodinger equation of one space dimention with quadratic non-linearities. We proved that the initial value problems with initial values in Besov spaces of order-3/4, exponent 2 and subexponent 1 has time-locally solvable. We also found that our method is applicable to KdV equation.

  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] Fukuma,S.& Muramatu,T: "L_p and Besov maximal estimates for the Schrodinger equation"Tohoku Mathematical Journal. 51・2. 193-203 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 村松壽延: "非負作用素の作用素解析"実解析学シンポジウム1999報告集. 154-163 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Muramatu,T.& Tojima,T.: "Construction of the evolution operator of parabolic type"Osaka Mathematical Jounal. (掲載決定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Iwano,M.: "Analyctical simplification of a 2-system of nonlinear equations with a degenerated irregular type singularity"Funkcialaj Ekvacioj. 42・2. 165-199 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Matsuyama,Y.: "Curvature pinching ror totally real submaifolds of a complex projective space"J.Math.Soc.Japan. 52・1. 51-64 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshino,M.: "Global solvability of Monge-Ampere type equations"Commun.in Partial Diffential Equations. 25-9&10. 1925-1950 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Fukuma, S.& Muramatu, T.: "L_p and Besov maximal estimates for the Schrodinger equation"Tohoku Math.J.. 51-2. 193-203 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Muramatu, T.& Tojima, T.: "Construction of the evolution operator of parabolic type"Osaka Math.J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Iwano, M.: "Analyctical simplification of a 2-system of nonlinear equations with a degenerated irregular type singularity"Funkcialaj Ekvacioj. 42-2. 165-199 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Matsuyama, Y.: "Curvature pinching ror totally real submaifoldsof a complex projective space"J.Math.Soc.Japan. 52-1. 51-64 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshino, M.: "Global solvability of Monge-Ampere type equations"Commun.in P.D.E.. 25-9 & 10. 1925-1950 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi