• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Establishment of operator inequalities by using computers and their applications

Research Project

Project/Area Number 11640186
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionScience University of Tokyo

Principal Investigator

FURUTA Takayuki  Science University of Tokyo Faculty of Science Professor, 理学部, 教授 (40007612)

Project Period (FY) 1999 – 2000
KeywordsLowner-Heinz inequality / Furuta inequality / generalized Furuta inequality / log majorization / order preserving inequality / chaotic order / relative operator entropy / positive definite operator
Research Abstract

In what follows, a capital letter means a bounded linear operator on a Hilbert space. Furuta inequality (1987) asserts that if A 【greater than or equal】 B 【greater than or equal】 0, then for r 【greater than or equal】 0,
(*) (A^<r/2> A^p A^<r/2>)^<1/q> 【greater than or equal】 (A^<r/2> B^p A^<r/2>)^<1/q>
holds for p 【greater than or equal】 0 and q 【greater than or equal】 1 with (1 + r)q 【greater than or equal】 p + r. Furuta inequality yields the famous Lowner-Heinz one (1934), that is, A 【greater than or equal】 B 【greater than or equal】 0 ensures A^p 【greater than or equal】 B^p for 1 【greater than or equal】 p 【greater than or equal】 0 when we put r = 0 in (*). We obtained a lot of applications of Furuta inequality in the following three branches, (a) operator ibnequalities, (b) norm inequalities and (c) operator equations. We cite some of them as follows : (a_1) relative operator entropy, (a_2) Ando-Hiai log majorization, (a_3) Aluthge transformation, (b_1) Heinz-Kato inequality, (b_2) Kosaki trace inequality, (c_1) Pedersen-Takesaki operator equation. Recently we obtained a one page simplified proof of generalized Furuta inequality which interpolates Furuta inequality itself and an inequality equivalent to the main theorem on log majorizaton by Ando-Hiai. Further applications of Furuta inequality to some operator equatios and relative operator entoropy will be expected in near future.

  • Research Products

    (26 results)

All Other

All Publications (26 results)

  • [Publications] T.Furuta: "Generalizied Juruta inequality Banach-algebra"Mathematical lnequalities and Applications. 2. 289-295 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.I.Fujii: "Simplified proof of characterization of chaotic order via Specht's ratio"Sciential Mathematical. 2. 63-64 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Furuta: "On rowers of p-hyponormal and log-hynonomal operators"J.Inequalties and Applications. 5. 367-380 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Furuta: "On rowers of p-hynonormal operators"Sciential Mathematical. 2. 279-284 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Furuta: "An application of generalized furuta ineqality to Kamtoronical…"Sciential Matheamatical. 2. 393-399 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Furuta: "Applications of Gramian transformation formula"Sciential Mathematical. 3. 81-86 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Furuta: "Simple proof of the concavity on operafor entropy f(A)=-Alog A"Mathematical Inequaties and Applications. 3. 305-306 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Furuta: "Results under logAzlogB can be derived from ones under…"Mathematical Inequalities and Applications. 3. 423-436 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Furuta: "A logarithmicon Jurnta inequality"Sciential Mathematical. 3. 229-231 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Juruta: "The Holder-McCanthy and young inequalities on equivalent"American Mathamathcal Monthly. 106. 68-69 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Furuta: "Spectial order A>B il and only of A^<2p-r>Z(A-r/2B^PA-r/2)(2p-r)/(p-r)for…"Mathematical Inequalities and Applications. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Furuta: "Logarithmic order and dual logarilhmic order"Acta &ci Math(Sgeged). (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Furuta: "A【greater than or equal】B【greater than or equal】0ensures (Ar/2A^pAr/2)^<r/q>(Ar/2B^PAr/2)^<r/q>for"Math Japonicae. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Furuta: "Generalized Furuta inequality in Banach ^*-albegra"Mathematical Inequalities and Applications. 2. 289-295 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.I.Fujii: "Simplified proof of characteriation of chaotic order via Specht's ratio"Scientiae Mathematicae. 2. 63-64 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Furuta: "On powers of p-hyponormal and log-hyponormal operators"J.Inequalities and Applications. 5. 367-380 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Furuta: "On powers of p-hyponormal operators"Scientiae Mathematicae. 2. 279-284 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Furuta: "An application of generalized Furut inequality to Kantorovich type inequalities"Scientiae Mathematicae. 2. 393-399 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Furuta: "Applications of Gramian transformation formula"Scientiae Mathematicae. 3. 81-86 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Furuta: "Simple proof of the concavity on operator entropy f(A) = -A log A"Mathematical Inequalities and Applications. 3. 305-306 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Furuta: "Results under log A 【greater than or equal】 log B can be derived from ones under A 【greater than or equal】 B 【greater than or equal】 0 by Uchiyama's meyhod"Mathematical Inequalities and Applications. 3. 423-436 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Furuta: "A folk theorem on Furuta inequality"Scientiae Mathematicae. 3. 229-231 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Furuta: "The Holder-McCarthy and Young inequalities are equivalent for Hilbert space operators"American Mathematical Monthly. 106. 68-69 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Furuta: "Spectral order A > B if and only if A^<2p-r> 【greater than or equal】 (A^<(-r)/2> B^p A^<(-r)/2>)^<(2p-r)/(p-r)> for all p > r 【greater than or equal】 0 and its application"Mathematical Inequalities and Applications. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Furuta: "Logarithmic order and dual logarithmic order"Acta Sci.Math (Szeged).. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Furuta: "A 【greater than or equal】 B 【greater than or equal】 0 ensures (A^<r/2> A^p A^<r/2>)^<1/q> 【greater than or equal】 (A^<r/2> B^p A^<r/2>)^<1/q> for p 【greater than or equal】 0, q 【greater than or equal】 1, r 【greater than or equal】 0 with (1 + r)q 【greater than or equal】 p + r and its applications"Math. Japonicae.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi