• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Boundary behavior of analytic functions and harmonic functions

Research Project

Project/Area Number 11640187
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionDaido Institute of Technology

Principal Investigator

SEGAWA Shigeo  Daido Institute of Technology, Engineering, Professor, 工学部, 教授 (80105634)

Co-Investigator(Kenkyū-buntansha) UEDA Hideharu  Daido Institute of Technology, Engineering, Professor, 工学部, 教授 (20139968)
TADA Toshimasa  Daido Institute of Technology, Engineering, Professor, 工学部, 教授 (90105635)
IMAI Hideo  Daido Institute of Technology, Engineering, Professor, 工学部, 教授 (00075855)
NAKAI Mitsuru  Nagoya Institute of Technology, Professor emeritus, 名誉教授 (10022550)
NARITA Junichiro  Daido Institute of Technology, Engineering, Assistant Professor, 工学部, 助教授 (30189211)
Project Period (FY) 1999 – 2000
KeywordsMartin boundary / positive harmonic function / unlimited covering surface / Picard principle / polyharmonic function / meromorphic function / Myrberg phenomenon / interpolating sequence
Research Abstract

1. Segawa showed that every positive harmonic function on a finitely sheeted unlimited covering surface of an open Riemann surface of positive boundary is a pullback of a positive harmonic function on the base surface by the projection map if and only if the Martin compactification of the covering surface is isomorphic to that of the base surface via the projection map. Segawa proved an analogous result of the above for bounded harmonic functions in terms of Martin boundary. Segawa determined the Martin boundaries of m-sheeted cyclic unlimited covering surfaces of the complex plane. Nakai showed that Royden p-compactifications for 1<p<d of two d-dimensional Riemannian manifolds (d【greater than or equal】2) are homeomorphic if and only if there exists a almost quasiisometric homeomorphism between these Riemannian manifolds. 2. Nakai and Tada determined the maximal growth of a rotation free density which is an exceptional perturbation for Picard principle. Tada and Nakai showed that if the Picard principle is valid for a rotation free density P, then there exists an essential set of P which is arbitrarily small and rare in a sense. 3. Nakai and Tada proved an extension of the Liouville theorem for a class of functions which properly contains polyharmonic functions. 4. Ueda showed that for a family of entire functions, the zeros of each function in the family are of odd order. Ueda generalized Nevanlinna's three-function theorem. 5. Narita gave a sufficient condition for bounded domains in order that a harmonic interpolating sequence is also an interpolating sequence. Narita gave a sufficient condition for bounded domains without irregular boundary points in order that there exists a harmonic interpolating sequence which is not interpolating. Nakai showed that the uniqueness theorem is sufficient but not necessary for the occurrence of the Myrberg phenomenon.

  • Research Products

    (32 results)

All Other

All Publications (32 results)

  • [Publications] H.Masaoka: "Martin boundary of unlimited covering surfaces"J.d'Analyse Math.. 82. 55-72 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Jin: "Kuramochi boundary of unlimited covering surfaces"Analysis. 20. 163-190 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Nakai: "A form of classical Liouville theorem for polyharmonic functions"Hiroshima Math.J.. 30. 205-213 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Nakai: "Harmonic Liouville theorem for exterior domains"J.Math.Analy.Appli. 253. 269-273 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 中井三留: "ピカール原理に於ける本態集合と除外摂動"大同工業大学紀要. 36. 11-20 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Ueda: "On entire functions of the form e^H+e^L+1 all of whose zeros are of even order with two polynomials H and L"大同工業大学紀要. 36. 5-10 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 成田淳一郎: "Interpolating sequences on plane domains with hyperbolically rare boundary"数理解析研究所講究録. 1137. 71-78 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Nakai: "Existence of quasi-isometric mappings and Royden compacifications"Ann.Acad.Sci.Fenn., Ser.AI.Math.. 25. 239-260 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Nakai: "Dirichlet finite harmonic measures on topological balls"J.Math.Soc.Japan. 52. 501-513 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Hayashi: "A uniqueness theorem and the Myrberg phenomenon for a Zalcman domain"J, d'Analyse Math.. 82. 267-283 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Masaoka: "Martin houndary of unlimited covering surfaces"J.d'Analyse Math.. 82. 55-72 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Jin: "Kuramochi boundary of unlimited covering surfaces"Analysis. 20. 163-190 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Nakai: "A form of classical Liouville theorem for polyharmonic functions"Hiroshima Math.J.. 30. 205-213 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Nakai: "Harmonic Liouville theorem for exterior domains"J.Math.Analy.Appli.. 253. 269-273 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 中井三留: "ピカール原理に於ける本態集合と除外摂動"大同工業大学紀要. 36. 11-20 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Ueda: "On entire functions of the form e^H+e^L+1 all of whose zeros are of even order with two polynomials H and L"大同工業大学紀要. 36. 5-10 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Segawa: "Martin boundaries of finitely sheeted unlimited covering surfaces of C\{0}(in Japanese)"RIMS Kokyuroku. vol.1116. 29-37 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Nakai: "The Liouville theorem in the theory of poly-harmonic functions (in Japanese)"Bull.Daido Inst.Tech.. vol.35. 13-24 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Ueda: "A generalization of Nevanlinna's three-function theorem"Bull.Daido Inst.Tech.. vol.35. 5-11 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Narita: "Interpolating and harmonic interpolating sequences in bounded plane domains (in Japanese)"Bull.Daido Inst.Tech.. vol.35. 25-28 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Nakai: "Harmonic functions expressible as Dirichlet solutions"Kodai Math.J.. vol.22. 116-130 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Segawa: "Bounded harmonic functions on unlimited covering surfaces"RIMS Kokyuroku. vol.1137. 86-98 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Masaoka: "Martin boundary of unlimited covering surfaces"J.d'Analyse Math.. vol.82. 55-72 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Jin: "Kuramochi boundary of unlimited covering surfaces"Analysis. vol.20. 163-190 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Nakai: "A form of classical Liouville theorem for poly-harmonic functions"Hiroshima Math.J.. vol.30. 205-213 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Nakai: "Essential sets and negligible perturbations in the Picard principle (in Japanese)"Bull.Daido Inst.Tech.. vol.36. 11-20 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Nakai: "Harmonic Liouville theorem for exterior domains"J.Math.Analy.Appli.. vol.253. 269-273 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Ueda: "On entire functions of the form e^H+e^L+1 all of whose zeros are of even order with two polynomials H and L"Bull.Daido Inst.Tech.. vol.36. 5-10 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Narita: "Interpolating sequences on plane domains with hyperbolically rare boundary (in Japanese)"RIMS Kokyuroku. vol.1137. 71-78 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Nakai: "Existence of quasiisometric mappings and Royden compactifications"Ann.Acad.Sci.Fenn., Ser.AI.Math.. vol.259. 239-236 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Nakai: "Dirichlet finite harmonic measures on topological balls"J.Math.Soc.Japan. vol.52. 501-513 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Hayashi: "A uniqueness theorem and the Myrberg phenomenon for a Zalcman domain"J, d'Analyse Math.. vol.82. 267-283 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi