2000 Fiscal Year Annual Research Report
有限温度格子QCDにおけるハドロンのスペクトラル関数
Project/Area Number |
11640268
|
Research Institution | Fukui University |
Principal Investigator |
橋本 貴明 福井大学, 工学部, 助教授 (30228415)
|
Co-Investigator(Kenkyū-buntansha) |
堀辺 稔 福井大学, 工学部, 助教授 (90143932)
林 明久 福井大学, 工学部, 教授 (80208610)
松山 豊樹 奈良教育大学, 教育学部, 助教授 (70202330)
|
Keywords | 量子色力学 / 格子ゲージ理論 / ハドロン / スペクトラル関数 / 有限温度 / 場の理論 / 量子確率過程 / トンネル時間 |
Research Abstract |
有限温度におけるハドロンのスペクトラル関数は、有限温度における媒質効果のもとでのハドロンの質量や束縛状態の存在の有無など豊富な物理的内容を含むことが期待される。本年度は、昨年度開発した最大エントロピー法と打ち切り特異値法及びスペクトラル関数の正値性を保証するためのアルゴリズムを用いてスペクトル関数の解析を行った。また、最大エントロピー法の中で用いるエントロピーを公理論的に裏づけのあるものに変更し、比較を行った。解析したデータは温度方向の格子数が20の格子に対してであり、これは量子色力学の相転移より少し前の温度に対応するものである。擬スカラー及びベクトルチャネル双方に対して整合性のある結果となっている。今回の解析では、スペクトル関数のサンプリングの点の数が少なかったが理論的にはその数に制限はない。サンプル数を増やしての解析は今後の課題である。また、この解析に用いた格子ゲージ理論からのデータは動的なフェルミオンを考慮しない近似のもとでのものであった。フェルミオンを格子上で扱うには、ダブリングの問題があるためその取り扱いが困難であるが、我々は通常のスタッガードフェルミオンよりもダブリングの数が少ない改良された作用を考案した。この作用を用いての、実際のシミュレーションの可能性にも調査を行った。今回、導入されたデータ解析装置の計算能力を用いて量子論に対する確率論的アプローチのシミュレーションを行いトンネル時間の評価を行ったことを申し添える。
|
-
[Publications] Ph.de Forcrand et al.: Nucl.Phys.B(Proc.Suppl.). 73. 924-926 (1999)
-
[Publications] Ph.de Forcrand et al.: Nucl.Phys.B (Proc.Suppl.). 73. 477-479 (1999)
-
[Publications] Ph.de Forcrand et al.: Nucl.Phys.B (Proc.Suppl.). 73. 420-425 (1999)
-
[Publications] A.Takami et al.: "Determination of a new fermionic action on a lattice I"Phys.Rev.D. 62・7. 074502 1-8 (2000)
-
[Publications] A.Takami et al.: "Determination of a new fermionic action on a lattice II"Phys.Rev.D. 62・7. 077502 1-4 (2000)
-
[Publications] T.Hashimoto and T.Tomomura: "The estimation of tunneling time by the use of Nelson's quantum stochastic process"Proceedings of the Second International Conference Quantum Information II. 49-60 (2000)