• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

Parallel Numerical Processing of Linear Systems with Irregularly Sparse Coefficient Matrix

Research Project

Project/Area Number 11680341
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 計算機科学
Research InstitutionUNIVERSITY OF TOKYO

Principal Investigator

OYANAGI Yoshio  Department of Information Science, UNIVERSITY OF TOKYO, 大学院・理学系研究科, 教授 (60011673)

Co-Investigator(Kenkyū-buntansha) NISHIDA Akira  Department of Information Science, UNIVERSITY OF TOKYO, 大学院・理学系研究科, 助手 (60302808)
Project Period (FY) 1999 – 2000
Keywordslinear equations / sparse matrix / conjugate gradient method / preconditioning / multigrid / algebraic multigrid / AMG
Research Abstract

Parallel solution of large-scale linear systems which arise from the discretization of unstructured grid systems with irregular structures is studied. Although preconditioned conjugate gradient (PCG) methods are applicable to positive symmetric equations, the effectiveness of the PCG critically depends on the acceleration of convergence by the preconditioning and the parallelizability of the precontitioning. In this study, an algorithms to generated automatically generate the miltigrid using geometrical structures and to solve the systems of equations given by irregular finite element method for elliptic partial differential equations proposed. We found that although this method is effective for homogeneous problems, the convergence is not fast enough for problems with inhomogeneity. We proposed a kind of automatica semi-coursening method using an algebraic information at the same time for inhomogeneous problems. We have shown that our method gives almost the same performance as the ICCG (Incomplete Cholesky Conjugate Gradient) method. Since the ICCG cannot be parallelized, we believe our method can be applied to practical problems. For problems with the inhomogeneity of 100 or more, our method is inferior to the ICCG.We would like to continue our research toward the AMG, algebraic multi-grid method, and its application as a preconditioning.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Nishida,A.and Oyanagi,Y.: "A Survey of the Jacobi-Davidson Method and its Characteristics for Large-scale Eigenvalue Problems"IPSJ Transactions. Vol 41,No.8. 101-106 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Zhang,S.L.,Wang,R.H.,Oyanagi,Y.and Li.W.: "A Kind of Bivariate Cubic Splines and Related Linear Operators and Type-1 Triangulation"Japan Jounrnal of Industrial and Applied Mathematics. Vol.17 No.3. 391-402 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ito,S.,Zhang,S.L.,Oyanagi,Y. and Natori,M.: "Spectral Properties by Using Splitting Correction Preconditioner fir Kubear Systems that arise from Periodic B.P."Proceedings of International Conference on Information Society in the 21st Century. 425-431 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Zhang,S.L.,Oyanagi,Y.and Sugihara,M.: "Necessary and sufficient conditions for the convergnece of Orthomin(k) on singular and inconsistent linear systems"Numerische Mathematik. Vol.87. 391-405 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Nishida,A.and Oyanagi,Y.: "Parallel Implementation of the Jacobi-Davidson Method and its Evaluation"IPSJ Transactions on High Performance Computing Sysstems. Vol.41 No.2. 101-106 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hanawa,Y.and Oyanagi,Y.: "A Dented Tridiagonal Parallel Preconditioner for the Conjugate Gradient Method"Proceedings of RIKEN Internations Symposium on Linear Algebra and its Applications. 164-171 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Nishida, A.and Oyanagi, Y.: "A Survey of the Jacobi-Davidson Method and its Characteristics for Large-scale Eigenvalue Problems"IPSJ Transactions on High Performance Computing Sysmtems. 41. 101-106 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Zhang, S.L., Wang, R.H., Oyanagi, Y.and Li.W.: "A Kind of Bivariate Cubic Splines and Related Linear Operators and Type-1 Triangulation"Japan Jounrnal of Industrial and Applied Mathematics. 17. 391-402 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ito, S., Zhang, S.L., Oyanagi, Y.and Natori, M.: "Spectral Properties by Using Splitting Correction Preconditioner fir Kubear Systems that arise from Periodic Boundary Value Problems"Proceedings of International Conference on Information Society in the 21st Century. 425-431 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Zhang, S.L., Oyanagi, Y.and Sugihara, M.: "Necessary and sufficient conditions for the convergence of Orthomin (k) on singular and inconsistent linear systems"Numerische Mathematik. 87. 391-405 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nishida, A.and Oyanagi, Y.: "Parallel Implementation of the Jacobi-Davidson Method and its Evaluation"IPSJ Transactions on High Performance Computing. 41. 101-106 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hanawa, Y.and Oyanagi, Y.: "A Dented Tridiagonal Parallel Preconditioner for the Conjugate Gradient Method"Proceedings of RIKEN Internations Symposium on Linear Algebra and its Applications. 164-171 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi