• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Geometry of Partial Differential Equation, Spin Structure and Twistor Theory

Research Project

Project/Area Number 12304004
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNagoya University

Principal Investigator

SATO Hajime  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (30011612)

Co-Investigator(Kenkyū-buntansha) KOBAYASHI Ryoichi  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (20162034)
NAMIKAWA Yukihiro  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (20022676)
TSHUCHIYA Akihiro  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (90022673)
OHTA Hiroshi  Nagoya University, Graduate School of Mathematics, Assoc.Prof., 大学院・多元数理科学研究科, 助教授 (50223839)
NAYATANI Shin  Nagoya University, Graduate School of Mathematics, Assoc.Prof., 大学院・多元数理科学研究科, 助教授 (70222180)
Project Period (FY) 2000 – 2003
KeywordsPDE / Twistor thory / Grassmannian structure / Projective contact / Lagrangean / 3^<rd> order ODE
Research Abstract

As concrete examples of geometric structures related to system of geometric equations, we investigated the following pair structures by using the twistor correspondence.
a) projective and Grassmannian b) projective contact and Lagrangean c) Lie contact and Lorentzian d) pure spinor and neutral structures
We studied in detail the structures, got invariants and classified them. Further we extended the investigations to many different directions.
As for a), the head investigator and Machida worked together to obtain complete invariants as elements of Spencer cohomology.
Concerning b), the joint work of the head and Yoshikawa was the starting point of the investigation. Ozawa and the head found a system of partial differential equations, which gives a concrete contact transformation.
As for c) and d), we got the twistor diagrams and the relation of invariants. As a new extension of the study of differential equations, we got a fundamental system for the conformal structure, which may have many applications in geometry.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Hajime Sato: "Integrability of Contact Schwarzian Derivatives and its Linearization"Proceeding of "Geometry, Integrabiity and Quantization". 1. 225-228 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshinori Machida, Hajime Sato: "Twistor thory of manifolds with Grassmannian structures"Nagoya Math.J.. 160. 17-102 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tetsuya Ozawa, Hajime Sato: "Contact transformations and their Schwarzian derivatives"Advanced Studies in Pure Math.. 37. 337-366 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hajime Sato, Tetsuya Ozawa: "Conformal Schwarzian Derivatives and Differential Equations"Proceeding of "Geometry, Integrabiity and Quantization. 4. 271-283 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 佐藤 肇: "2階偏微分方程式系の接触幾何学"数学. 55. 155-165 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 佐藤 肇, 一楽重雄: "新版 幾何の魔術"日本評論社. 149 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hajime Sato: "Integrability of contact Schwarzian derivatives and its linearization"Proceeding of "Geometry, Integrability and Quantization" (Coral Press). 1. 225-228 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshinori Machida, Hajime Sato: "Twistor thory of manifolds with Grassmannian structures"Nagoya Math.J.. 160. 17-102 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tetsuya Ozawa, Hajime Sato: "Contact transformations and their Schwarzian derivatives"Advanced Studies in Pure math.. 37. 337-366 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hajime Sato, Tetsuya Ozawa: "Conformal Schwarzian Derivatives and Differential Equations"Proceeding of "Geometry, Integrability and Quantization" (Coral Press). 4. 271-283 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hajime Sato: "Contact geometry of second order partial differential Equations (in Japanese)"Suugaku. 55. 155-165 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hajime Sato, Shigeo Ichiraku: "Magic of geometry, New Edition (in Japanese)"Nihon Hyoronsya.

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi